{"title":"Cross-sectional zero-dimension temperature model for thin-walled circular tubes in space environment","authors":"Zhe Ma, Zhenxing Shen","doi":"10.1016/j.tws.2024.112591","DOIUrl":null,"url":null,"abstract":"<div><div>A sufficiently accurate, yet computationally efficient prediction of temperature field is essential for design of spacecraft structures. This paper presents a model dimension reduction method for thermal analysis of thin-walled circular tubes in space environment, which takes into account radiation heat transfer among the internal surfaces besides heat conduction along the circumferential direction and radiative emission from the external surface. Temperature distribution on the tube cross section is approximated by a series of harmonic functions, so that a one-dimensional problem is reduced to that of zero dimension. The relation between average and perturbation temperatures that depend only on time is broadened to fully coupled one. By comparison to the previous model and the plane finite element model, the accuracy and economy of the new model are illustrated. The results show that internal radiation exchange plays an important role in thermal analysis of thin-walled circular tubes used extensively in spacecraft appendages. Furthermore, differences between present and previous models are analyzed and a two-way analysis of variance is performed to determine the effect of various physical and geometric parameters on the temperature distribution and response of the tubes. The work can be further developed to analyze thermally induced deformation and vibration of spacecraft structures.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"205 ","pages":"Article 112591"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823124010310","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
A sufficiently accurate, yet computationally efficient prediction of temperature field is essential for design of spacecraft structures. This paper presents a model dimension reduction method for thermal analysis of thin-walled circular tubes in space environment, which takes into account radiation heat transfer among the internal surfaces besides heat conduction along the circumferential direction and radiative emission from the external surface. Temperature distribution on the tube cross section is approximated by a series of harmonic functions, so that a one-dimensional problem is reduced to that of zero dimension. The relation between average and perturbation temperatures that depend only on time is broadened to fully coupled one. By comparison to the previous model and the plane finite element model, the accuracy and economy of the new model are illustrated. The results show that internal radiation exchange plays an important role in thermal analysis of thin-walled circular tubes used extensively in spacecraft appendages. Furthermore, differences between present and previous models are analyzed and a two-way analysis of variance is performed to determine the effect of various physical and geometric parameters on the temperature distribution and response of the tubes. The work can be further developed to analyze thermally induced deformation and vibration of spacecraft structures.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.