{"title":"Progressive collapse of beam-to-upright subassemblies of steel storage racks under a column removal scenario","authors":"Liusi Dai , Hao Yao , Shen Yan , Chong Ren","doi":"10.1016/j.tws.2024.112575","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an experimental investigation into progressive collapse behaviour of steel storage pallet racks under a column removal scenario. The double-half-span substructure is applied in experimental tests. A total of eight substructures are tested, considering two types of beam-to-upright connections, i.e., boltless and bolted connections, commonly used in pallet racks. Different upright profiles and thicknesses, varied beam heights, and the number of tabs are carefully considered in the tests, and their effects on progressive collapse behaviour of pallet racks are thus evaluated. In particular, the influence of pallet loads is carefully evaluated in this paper. Detailed experimental results of all specimens are provided, including the full-range force-displacement curves and the failure modes. The dominated failure modes observed in the tests are the combination of tab crack and bolt bearing failure leading to tearing of beam-end-connector (T+B), the combination of tab crack and bolt bearing failure leading to tearing of upright wall (T+C), and tab crack (T). The test results revealed that the presence of pallet loads greatly influences structural progressive collapse behaviour and thus should be considered in further studies. Moreover, in bolted connections, smaller beam heights and thinner column thicknesses exhibit better resistance against progressive collapse. Whereas in boltless connections, increasing the number of tabs enhances the resistance against progressive collapse. Generally, the bolted connections are proven to have better resistance against progressive collapse than boltless connections and can be used in storage racks to improve structural robustness.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"205 ","pages":"Article 112575"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823124010152","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an experimental investigation into progressive collapse behaviour of steel storage pallet racks under a column removal scenario. The double-half-span substructure is applied in experimental tests. A total of eight substructures are tested, considering two types of beam-to-upright connections, i.e., boltless and bolted connections, commonly used in pallet racks. Different upright profiles and thicknesses, varied beam heights, and the number of tabs are carefully considered in the tests, and their effects on progressive collapse behaviour of pallet racks are thus evaluated. In particular, the influence of pallet loads is carefully evaluated in this paper. Detailed experimental results of all specimens are provided, including the full-range force-displacement curves and the failure modes. The dominated failure modes observed in the tests are the combination of tab crack and bolt bearing failure leading to tearing of beam-end-connector (T+B), the combination of tab crack and bolt bearing failure leading to tearing of upright wall (T+C), and tab crack (T). The test results revealed that the presence of pallet loads greatly influences structural progressive collapse behaviour and thus should be considered in further studies. Moreover, in bolted connections, smaller beam heights and thinner column thicknesses exhibit better resistance against progressive collapse. Whereas in boltless connections, increasing the number of tabs enhances the resistance against progressive collapse. Generally, the bolted connections are proven to have better resistance against progressive collapse than boltless connections and can be used in storage racks to improve structural robustness.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.