Jiye Chen , Yufeng Zhao , Hai Fang , Zhixiong Zhang , Zheheng Chen , Wangwang He
{"title":"A novel machine learning framework for impact force prediction of foam-filled multi-layer lattice composite structures","authors":"Jiye Chen , Yufeng Zhao , Hai Fang , Zhixiong Zhang , Zheheng Chen , Wangwang He","doi":"10.1016/j.tws.2024.112607","DOIUrl":null,"url":null,"abstract":"<div><div>Numerical simulations can provide valuable insights for the optimization of design and operational management; however, they are often impractical and computationally intensive. Machine learning methods are appealing to these problems due to their sufficient efficiency and accuracy. In this study, a novel framework for predicting the impact responses of foam-filled multi-layer lattice composite structures (FMLCSs) was proposed by combining the accurate finite element (FE) analyses, surrogate models, fast Fourier transform (FFT) method, and inverse FFT (IFFT) method. Firstly, reliable FM models were established to simulate the crashworthiness of the five FMLCSs under impact loading, including an analysis of energy transformation. Subsequently, surrogate models, namely radial basis function (RBF), polynomial response surface (PRS), Kriging (KRG), and back propagation neural network (BPNN), combined with methods of FFT and IFFT, were employed to predict the impact force-time series of the FMLCSs. More than 1000 frequency points were employed for each type of FMLCS, and all the R-square (<em>R</em><sup>2</sup>) values of the established surrogate models exceeded 0.95, indicating that the proposed framework accurately predicted the impact duration and impact responses in the frequency domain. In addition, parameter sensitivity analysis revealed that a high peak impact force was accompanied by a short impact duration. Moreover, increasing the lattice-web height resulted in a significant increase in the impact duration.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"205 ","pages":"Article 112607"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823124010474","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Numerical simulations can provide valuable insights for the optimization of design and operational management; however, they are often impractical and computationally intensive. Machine learning methods are appealing to these problems due to their sufficient efficiency and accuracy. In this study, a novel framework for predicting the impact responses of foam-filled multi-layer lattice composite structures (FMLCSs) was proposed by combining the accurate finite element (FE) analyses, surrogate models, fast Fourier transform (FFT) method, and inverse FFT (IFFT) method. Firstly, reliable FM models were established to simulate the crashworthiness of the five FMLCSs under impact loading, including an analysis of energy transformation. Subsequently, surrogate models, namely radial basis function (RBF), polynomial response surface (PRS), Kriging (KRG), and back propagation neural network (BPNN), combined with methods of FFT and IFFT, were employed to predict the impact force-time series of the FMLCSs. More than 1000 frequency points were employed for each type of FMLCS, and all the R-square (R2) values of the established surrogate models exceeded 0.95, indicating that the proposed framework accurately predicted the impact duration and impact responses in the frequency domain. In addition, parameter sensitivity analysis revealed that a high peak impact force was accompanied by a short impact duration. Moreover, increasing the lattice-web height resulted in a significant increase in the impact duration.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.