IPCT-Net: Parallel information bottleneck modality fusion network for obstructive sleep apnea diagnosis

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Networks Pub Date : 2024-10-20 DOI:10.1016/j.neunet.2024.106836
Shuaicong Hu , Yanan Wang , Jian Liu , Zhaoqiang Cui , Cuiwei Yang , Zhifeng Yao , Junbo Ge
{"title":"IPCT-Net: Parallel information bottleneck modality fusion network for obstructive sleep apnea diagnosis","authors":"Shuaicong Hu ,&nbsp;Yanan Wang ,&nbsp;Jian Liu ,&nbsp;Zhaoqiang Cui ,&nbsp;Cuiwei Yang ,&nbsp;Zhifeng Yao ,&nbsp;Junbo Ge","doi":"10.1016/j.neunet.2024.106836","DOIUrl":null,"url":null,"abstract":"<div><div>Obstructive sleep apnea (OSA) is a common sleep breathing disorder and timely diagnosis helps to avoid the serious medical expenses caused by related complications. Existing deep learning (DL)-based methods primarily focus on single-modal models, which cannot fully mine task-related representations. This paper develops a modality fusion representation enhancement (MFRE) framework adaptable to flexible modality fusion types with the objective of improving OSA diagnostic performance, and providing quantitative evidence for clinical diagnostic modality selection. The proposed parallel information bottleneck modality fusion network (IPCT-Net) can extract local-global multi-view representations and eliminate redundant information in modality fusion representations through branch sharing mechanisms. We utilize large-scale real-world home sleep apnea test (HSAT) multimodal data to comprehensively evaluate relevant modality fusion types. Extensive experiments demonstrate that the proposed method significantly outperforms existing methods in terms of participant numbers and OSA diagnostic performance. The proposed MFRE framework delves into modality fusion in OSA diagnosis and contributes to enhancing the screening performance of artificial intelligence (AI)-assisted diagnosis for OSA.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"181 ","pages":"Article 106836"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024007603","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Obstructive sleep apnea (OSA) is a common sleep breathing disorder and timely diagnosis helps to avoid the serious medical expenses caused by related complications. Existing deep learning (DL)-based methods primarily focus on single-modal models, which cannot fully mine task-related representations. This paper develops a modality fusion representation enhancement (MFRE) framework adaptable to flexible modality fusion types with the objective of improving OSA diagnostic performance, and providing quantitative evidence for clinical diagnostic modality selection. The proposed parallel information bottleneck modality fusion network (IPCT-Net) can extract local-global multi-view representations and eliminate redundant information in modality fusion representations through branch sharing mechanisms. We utilize large-scale real-world home sleep apnea test (HSAT) multimodal data to comprehensively evaluate relevant modality fusion types. Extensive experiments demonstrate that the proposed method significantly outperforms existing methods in terms of participant numbers and OSA diagnostic performance. The proposed MFRE framework delves into modality fusion in OSA diagnosis and contributes to enhancing the screening performance of artificial intelligence (AI)-assisted diagnosis for OSA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IPCT-Net:用于阻塞性睡眠呼吸暂停诊断的并行信息瓶颈模式融合网络
阻塞性睡眠呼吸暂停(OSA)是一种常见的睡眠呼吸障碍,及时诊断有助于避免相关并发症造成的严重医疗费用。现有的基于深度学习(DL)的方法主要侧重于单模态模型,无法充分挖掘与任务相关的表征。本文开发了一种适应灵活模态融合类型的模态融合表征增强(MFRE)框架,旨在提高 OSA 诊断性能,为临床诊断模态选择提供定量证据。本文提出的并行信息瓶颈模态融合网络(IPCT-Net)可以提取局部-全局多视角表征,并通过分支共享机制消除模态融合表征中的冗余信息。我们利用大规模真实家庭睡眠呼吸暂停测试(HSAT)多模态数据,全面评估了相关模态融合类型。广泛的实验证明,所提出的方法在参与人数和 OSA 诊断性能方面明显优于现有方法。所提出的 MFRE 框架深入研究了 OSA 诊断中的模态融合,有助于提高人工智能辅助诊断 OSA 的筛查性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
期刊最新文献
Multi-source Selective Graph Domain Adaptation Network for cross-subject EEG emotion recognition. Spectral integrated neural networks (SINNs) for solving forward and inverse dynamic problems. Corrigendum to "Multi-view Graph Pooling with Coarsened Graph Disentanglement" [Neural Networks 174 (2024) 1-10/106221]. Multi-compartment neuron and population encoding powered spiking neural network for deep distributional reinforcement learning. Multiscroll hopfield neural network with extreme multistability and its application in video encryption for IIoT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1