Sai Sanjay Narayanan;Uday K. Khankhoje;Radha Krishna Ganti
{"title":"Optimum Beamforming and Grating-Lobe Mitigation for Intelligent Reflecting Surfaces","authors":"Sai Sanjay Narayanan;Uday K. Khankhoje;Radha Krishna Ganti","doi":"10.1109/TAP.2024.3463805","DOIUrl":null,"url":null,"abstract":"Ensuring adequate wireless coverage in upcoming communication technologies such as 6G is expected to be challenging. This is because user demands of higher data rate require an increase in carrier frequencies, which in turn reduce the diffraction effects (and hence coverage) in complex multipath environments. Intelligent reflecting surfaces (IRSs) have been proposed as a way of restoring coverage by adaptively reflecting incoming electromagnetic waves in desired directions. This is accomplished by judiciously adding extra phases at different points on the surface. In practice, these extra phases are only available in discrete quantities due to hardware constraints. Computing these extra phases is computationally challenging when they can only be picked from a discrete distribution, and existing approaches for solving this problem were either heuristic or based on evolutionary algorithms. We solve this problem by proposing fast algorithms with provably optimal solutions. Our algorithms have linear complexity, and are presented with rigorous proofs for their optimality. We show that the proposed algorithms exhibit better performance. We analyze situations when unwanted grating-lobes arise in the radiation pattern, and discuss mitigation strategies, such as the use of triangular lattices and prephasing techniques, to eliminate them. We also demonstrate how our algorithms can leverage these techniques to deliver optimum beamforming solutions.","PeriodicalId":13102,"journal":{"name":"IEEE Transactions on Antennas and Propagation","volume":"72 11","pages":"8540-8553"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10694729/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Ensuring adequate wireless coverage in upcoming communication technologies such as 6G is expected to be challenging. This is because user demands of higher data rate require an increase in carrier frequencies, which in turn reduce the diffraction effects (and hence coverage) in complex multipath environments. Intelligent reflecting surfaces (IRSs) have been proposed as a way of restoring coverage by adaptively reflecting incoming electromagnetic waves in desired directions. This is accomplished by judiciously adding extra phases at different points on the surface. In practice, these extra phases are only available in discrete quantities due to hardware constraints. Computing these extra phases is computationally challenging when they can only be picked from a discrete distribution, and existing approaches for solving this problem were either heuristic or based on evolutionary algorithms. We solve this problem by proposing fast algorithms with provably optimal solutions. Our algorithms have linear complexity, and are presented with rigorous proofs for their optimality. We show that the proposed algorithms exhibit better performance. We analyze situations when unwanted grating-lobes arise in the radiation pattern, and discuss mitigation strategies, such as the use of triangular lattices and prephasing techniques, to eliminate them. We also demonstrate how our algorithms can leverage these techniques to deliver optimum beamforming solutions.
期刊介绍:
IEEE Transactions on Antennas and Propagation includes theoretical and experimental advances in antennas, including design and development, and in the propagation of electromagnetic waves, including scattering, diffraction, and interaction with continuous media; and applications pertaining to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques