Sparse Array Design via Integer Linear Programming

IF 4.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Signal Processing Pub Date : 2024-09-16 DOI:10.1109/TSP.2024.3460383
Yangjingzhi Zhuang;Xuejing Zhang;Zishu He;Maria Sabrina Greco;Fulvio Gini
{"title":"Sparse Array Design via Integer Linear Programming","authors":"Yangjingzhi Zhuang;Xuejing Zhang;Zishu He;Maria Sabrina Greco;Fulvio Gini","doi":"10.1109/TSP.2024.3460383","DOIUrl":null,"url":null,"abstract":"In this paper, a design framework based on integer linear programming is proposed for optimizing sparse array structures. We resort to binary vectors to formulate the design problem for non-redundant arrays (NRA) and minimum-redundant arrays (MRA). The flexibility of the proposed framework allows for dynamic adjustment of constraints to meet various applicative requirements, e.g., to achieve desired array apertures and mitigate mutual coupling effects. The proposed framework is also extended to the design of high-order arrays associated by exploiting high-order cumulants. The effectiveness of the proposed sparse array design framework is investigated through extensive numerical analysis. A comparative analysis with closed-form solutions and integer linear programming-based array design methods confirms the superiority of the proposed design framework in terms of number of degrees of freedom (DOF) and direction of arrival (DOA) estimation accuracy.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"72 ","pages":"4812-4826"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10681123/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a design framework based on integer linear programming is proposed for optimizing sparse array structures. We resort to binary vectors to formulate the design problem for non-redundant arrays (NRA) and minimum-redundant arrays (MRA). The flexibility of the proposed framework allows for dynamic adjustment of constraints to meet various applicative requirements, e.g., to achieve desired array apertures and mitigate mutual coupling effects. The proposed framework is also extended to the design of high-order arrays associated by exploiting high-order cumulants. The effectiveness of the proposed sparse array design framework is investigated through extensive numerical analysis. A comparative analysis with closed-form solutions and integer linear programming-based array design methods confirms the superiority of the proposed design framework in terms of number of degrees of freedom (DOF) and direction of arrival (DOA) estimation accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过整数线性规划设计稀疏阵列
本文提出了一种基于整数线性规划的设计框架,用于优化稀疏阵列结构。我们采用二进制向量来表述非冗余阵列(NRA)和最小冗余阵列(MRA)的设计问题。拟议框架的灵活性允许对约束条件进行动态调整,以满足各种应用要求,例如实现所需的阵列孔径和减轻相互耦合效应。通过利用高阶累积量,提议的框架还扩展到了相关高阶阵列的设计。通过大量的数值分析,研究了所提出的稀疏阵列设计框架的有效性。通过与闭式解法和基于整数线性规划的阵列设计方法进行比较分析,证实了所提出的设计框架在自由度(DOF)数量和到达方向(DOA)估计精度方面的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
期刊最新文献
Low-Tubal-Rank Tensor Recovery via Factorized Gradient Descent Data-Driven Quickest Change Detection in (Hidden) Markov Models Simplicial Vector Autoregressive Models A Directional Generation Algorithm for SAR Image based on Azimuth-Guided Statistical Generative Adversarial Network Structured Directional Pruning via Perturbation Orthogonal Projection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1