Comprehensive mapping of synaptic vesicle protein 2A (SV2A) in health and neurodegenerative diseases: a comparative analysis with synaptophysin and ground truth for PET-imaging interpretation
Mahsa Shanaki Bavarsad, Salvatore Spina, Abby Oehler, Isabel E. Allen, Claudia K. Suemoto, Renata E. P. Leite, William S. Seeley, Ari Green, William Jagust, Gil D. Rabinovici, Lea T. Grinberg
{"title":"Comprehensive mapping of synaptic vesicle protein 2A (SV2A) in health and neurodegenerative diseases: a comparative analysis with synaptophysin and ground truth for PET-imaging interpretation","authors":"Mahsa Shanaki Bavarsad, Salvatore Spina, Abby Oehler, Isabel E. Allen, Claudia K. Suemoto, Renata E. P. Leite, William S. Seeley, Ari Green, William Jagust, Gil D. Rabinovici, Lea T. Grinberg","doi":"10.1007/s00401-024-02816-9","DOIUrl":null,"url":null,"abstract":"<div><p>Synaptic dysfunction and loss are central to neurodegenerative diseases and correlate with cognitive decline. Synaptic Vesicle Protein 2A (SV2A) is a promising PET-imaging target for assessing synaptic density in vivo, but comprehensive mapping in the human brain is needed to validate its biomarker potential. This study used quantitative immunohistochemistry and Western blotting to map SV2A and synaptophysin (SYP) densities across six cortical regions in healthy controls and patients with early-onset Alzheimer’s disease (EOAD), late-onset Alzheimer’s disease (LOAD), progressive supranuclear palsy (PSP), and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-GRN). We identified region in SV2A density among controls and observed disease- and region-specific reductions, with the most severe in FTLD-GRN (up to 59.5%) and EOAD. EOAD showed a 49% reduction in the middle frontal gyrus (MFG), while LOAD had over 30% declines in the inferior frontal gyrus (IFG) and hippocampus (CA1). In PSP, smaller but significant reductions were noted in the hippocampal formation, with the inferior temporal gyrus (ITG) relatively unaffected. A strong positive correlation between SV2A and SYP densities confirmed SV2A’s reliability as a synaptic integrity marker. This study supports the use of SV2A PET imaging for early diagnosis and monitoring of neurodegenerative diseases, providing essential data for interpreting in vivo PET results. Further research should explore SV2A as a therapeutic target and validate these findings in larger, longitudinal studies.</p></div>","PeriodicalId":7012,"journal":{"name":"Acta Neuropathologica","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00401-024-02816-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Synaptic dysfunction and loss are central to neurodegenerative diseases and correlate with cognitive decline. Synaptic Vesicle Protein 2A (SV2A) is a promising PET-imaging target for assessing synaptic density in vivo, but comprehensive mapping in the human brain is needed to validate its biomarker potential. This study used quantitative immunohistochemistry and Western blotting to map SV2A and synaptophysin (SYP) densities across six cortical regions in healthy controls and patients with early-onset Alzheimer’s disease (EOAD), late-onset Alzheimer’s disease (LOAD), progressive supranuclear palsy (PSP), and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-GRN). We identified region in SV2A density among controls and observed disease- and region-specific reductions, with the most severe in FTLD-GRN (up to 59.5%) and EOAD. EOAD showed a 49% reduction in the middle frontal gyrus (MFG), while LOAD had over 30% declines in the inferior frontal gyrus (IFG) and hippocampus (CA1). In PSP, smaller but significant reductions were noted in the hippocampal formation, with the inferior temporal gyrus (ITG) relatively unaffected. A strong positive correlation between SV2A and SYP densities confirmed SV2A’s reliability as a synaptic integrity marker. This study supports the use of SV2A PET imaging for early diagnosis and monitoring of neurodegenerative diseases, providing essential data for interpreting in vivo PET results. Further research should explore SV2A as a therapeutic target and validate these findings in larger, longitudinal studies.
期刊介绍:
Acta Neuropathologica publishes top-quality papers on the pathology of neurological diseases and experimental studies on molecular and cellular mechanisms using in vitro and in vivo models, ideally validated by analysis of human tissues. The journal accepts Original Papers, Review Articles, Case Reports, and Scientific Correspondence (Letters). Manuscripts must adhere to ethical standards, including review by appropriate ethics committees for human studies and compliance with principles of laboratory animal care for animal experiments. Failure to comply may result in rejection of the manuscript, and authors are responsible for ensuring accuracy and adherence to these requirements.