Stabilizing oxygen redox reaction in phase-transition-free P2-type Co/Ni-free cathode via Cu doping for sodium-ion batteries

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Science China Materials Pub Date : 2024-09-26 DOI:10.1007/s40843-024-3081-9
Hai-Xia Zhang  (, ), Lin-Rong Wu  (, ), Hao-Rui Wang  (, ), Dong-Zheng Wu  (, ), Shao-Hui Guo  (, ), Ding Zhang  (, ), Xiao-Chuan Duan  (, ), Xian-Ming Zhang  (, )
{"title":"Stabilizing oxygen redox reaction in phase-transition-free P2-type Co/Ni-free cathode via Cu doping for sodium-ion batteries","authors":"Hai-Xia Zhang \n (,&nbsp;),&nbsp;Lin-Rong Wu \n (,&nbsp;),&nbsp;Hao-Rui Wang \n (,&nbsp;),&nbsp;Dong-Zheng Wu \n (,&nbsp;),&nbsp;Shao-Hui Guo \n (,&nbsp;),&nbsp;Ding Zhang \n (,&nbsp;),&nbsp;Xiao-Chuan Duan \n (,&nbsp;),&nbsp;Xian-Ming Zhang \n (,&nbsp;)","doi":"10.1007/s40843-024-3081-9","DOIUrl":null,"url":null,"abstract":"<div><p>Due to their high capacity, the P2-type layered oxide cathodes containing oxygen redox reaction processes have attracted wide attention for sodium-ion batteries. However, these materials usually exhibit poor electro- chemical properties, resulting from irreversible oxygen redox reactions and phase transition processes at high voltages, and thus hinder their large-scale application. This work reveals the mechanism for the significantly improved cycle stability and rate performance of Co/Ni-free Na<sub>0.75</sub>Li<sub>0.25−2/3<i>x</i></sub>Cu<sub><i>x</i></sub>Mn<sub>0.75−1/3<i>x</i></sub> O<sub>2</sub> <i>via</i> Cu doping. <i>Ex-situ</i> XPS demonstrates that Cu doping reduces the amount of Mn<sup>3+</sup> that triggers the Jahn-Teller effect during the cycling. In addition, the electron enrichment of oxygen around Cu can alleviate the irreversible oxidation of oxygen, and thus suppressing the phase transition originates from the rapid weakening of the electrostatic repulsion between O-O. Meanwhile, <i>in-situ</i> XRD results verify that the Na<sub>0.75</sub>Li<sub>0.19</sub>Cu<sub>0.09</sub>Mn<sub>0.72</sub>O<sub>2</sub> maintains the P2 phase structure during charging and discharging, resulting in a near-zero strain characteristic of 1.9%. Therefore, the optimized cathode delivers a high reversible capacity of 194.9 mAh g<sup>−1</sup> at 0.1 C and excellent capacity retention of 88.6% after 100 cycles at 5 C. The full cell paired with commercial hard carbon anode delivers energy density of 240 Wh kg<sup>−1</sup>. Our research provides an idea for designing a new type of intercalated cathode for sodium-ion batteries with low cost and high energy density.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 11","pages":"3629 - 3636"},"PeriodicalIF":6.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3081-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to their high capacity, the P2-type layered oxide cathodes containing oxygen redox reaction processes have attracted wide attention for sodium-ion batteries. However, these materials usually exhibit poor electro- chemical properties, resulting from irreversible oxygen redox reactions and phase transition processes at high voltages, and thus hinder their large-scale application. This work reveals the mechanism for the significantly improved cycle stability and rate performance of Co/Ni-free Na0.75Li0.25−2/3xCuxMn0.75−1/3x O2 via Cu doping. Ex-situ XPS demonstrates that Cu doping reduces the amount of Mn3+ that triggers the Jahn-Teller effect during the cycling. In addition, the electron enrichment of oxygen around Cu can alleviate the irreversible oxidation of oxygen, and thus suppressing the phase transition originates from the rapid weakening of the electrostatic repulsion between O-O. Meanwhile, in-situ XRD results verify that the Na0.75Li0.19Cu0.09Mn0.72O2 maintains the P2 phase structure during charging and discharging, resulting in a near-zero strain characteristic of 1.9%. Therefore, the optimized cathode delivers a high reversible capacity of 194.9 mAh g−1 at 0.1 C and excellent capacity retention of 88.6% after 100 cycles at 5 C. The full cell paired with commercial hard carbon anode delivers energy density of 240 Wh kg−1. Our research provides an idea for designing a new type of intercalated cathode for sodium-ion batteries with low cost and high energy density.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过掺杂铜稳定钠离子电池中无相变 P2- 型 Co/Ni 无正极中的氧氧化还原反应
由于具有高容量,含有氧氧化还原反应过程的 P2- 型层状氧化物阴极在钠离子电池中受到广泛关注。然而,由于高电压下不可逆的氧氧化还原反应和相变过程,这些材料通常表现出较差的电化学性能,从而阻碍了它们的大规模应用。这项研究揭示了通过掺杂铜使无钴/无镍 Na0.75Li0.25-2/3xCuxMn0.75-1/3x O2 的循环稳定性和速率性能显著提高的机理。原位 XPS 显示,掺入 Cu 可减少循环过程中引发 Jahn-Teller 效应的 Mn3+ 量。此外,Cu 周围氧的电子富集可以减轻氧的不可逆氧化,从而抑制了源自 O-O 之间静电排斥力迅速减弱的相变。同时,原位 XRD 结果证实,Na0.75Li0.19Cu0.09Mn0.72O2 在充放电过程中保持了 P2 相结构,从而产生了 1.9% 的近零应变特性。因此,优化后的阴极在 0.1 C 时的可逆容量高达 194.9 mAh g-1,在 5 C 下循环 100 次后的容量保持率为 88.6%。我们的研究为设计低成本、高能量密度的新型钠离子电池插层阴极提供了思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
期刊最新文献
Reaction-based small-molecule fluorescent probes for endoplasmic reticulum- and mitochondria-targeted biosensing and bioimaging Promising graphdiyne-based nanomaterials for environmental pollutant control Hydrogen embrittlement of retrogression-reaged 7xxx-series aluminum alloys—a comprehensive review Supramolecular glass: a new platform for ultralong phosphorescence Simultaneously achieving high sensitivity, low dark current and low detection limits in anti-perovskites towards X-ray detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1