Revealing effects of powder reuse for LPBF-fabricated NiTi shape memory alloys

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Frontiers of Materials Science Pub Date : 2024-10-30 DOI:10.1007/s11706-024-0697-5
Xiang Li, Meng Zhou, Sihui Peng, Xiaonan Chen, Xueyuan Ge, Bingmin Huang, Lishan Cui, Shijie Hao
{"title":"Revealing effects of powder reuse for LPBF-fabricated NiTi shape memory alloys","authors":"Xiang Li,&nbsp;Meng Zhou,&nbsp;Sihui Peng,&nbsp;Xiaonan Chen,&nbsp;Xueyuan Ge,&nbsp;Bingmin Huang,&nbsp;Lishan Cui,&nbsp;Shijie Hao","doi":"10.1007/s11706-024-0697-5","DOIUrl":null,"url":null,"abstract":"<div><p>In metal-based additive manufacturing processes, such as laser powder bed fusion (LPBF), the powder utilization is often less than 50%. Considering the cost efficiency, powder reuse is needed for an economical and sustainable LPBF process. As intermetallic compounds, LPBF-fabricated NiTi alloys are characterized with phase transformation behaviors, mechanical properties and functions that are very sensitive to possible changes in powder characteristics caused through reuse, but the exact effects are still poorly understood. Here, the LPBF process has been repeated ten times using the virgin powder supplement method. Results show that the oxygen content of NiTi powders rises from 370 to 752.3 ppm with the enhancement of the reuse cycle number. Powder oxidation enhances the laser absorptivity of the powder bed, leading to an increase in surface roughness and porosity of NiTi parts. Compared to the specimens made from virgin powders, the mechanical property and shape memory function of specimens made from reused powders are degraded, mainly attributed to the oxygen impurity and deteriorated forming quality. This study allows making better decisions with regard to powder reuse in the development of performance-critical NiTi parts fabricated through LPBF.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-024-0697-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In metal-based additive manufacturing processes, such as laser powder bed fusion (LPBF), the powder utilization is often less than 50%. Considering the cost efficiency, powder reuse is needed for an economical and sustainable LPBF process. As intermetallic compounds, LPBF-fabricated NiTi alloys are characterized with phase transformation behaviors, mechanical properties and functions that are very sensitive to possible changes in powder characteristics caused through reuse, but the exact effects are still poorly understood. Here, the LPBF process has been repeated ten times using the virgin powder supplement method. Results show that the oxygen content of NiTi powders rises from 370 to 752.3 ppm with the enhancement of the reuse cycle number. Powder oxidation enhances the laser absorptivity of the powder bed, leading to an increase in surface roughness and porosity of NiTi parts. Compared to the specimens made from virgin powders, the mechanical property and shape memory function of specimens made from reused powders are degraded, mainly attributed to the oxygen impurity and deteriorated forming quality. This study allows making better decisions with regard to powder reuse in the development of performance-critical NiTi parts fabricated through LPBF.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示 LPBF 制造镍钛形状记忆合金粉末再利用的影响
在激光粉末床熔融(LPBF)等基于金属的增材制造工艺中,粉末利用率通常低于 50%。考虑到成本效益,需要对粉末进行再利用,以实现经济、可持续的 LPBF 工艺。作为金属间化合物,LPBF 制备的镍钛合金具有相变行为、机械性能和功能等特点,这些特点对粉末重复使用可能导致的粉末特性变化非常敏感,但人们对其确切影响仍知之甚少。在此,我们使用原始粉末补充法重复进行了十次 LPBF 工艺。结果表明,随着重复使用循环次数的增加,镍钛粉末的氧含量从 370 ppm 上升到 752.3 ppm。粉末氧化提高了粉末床的激光吸收率,导致镍钛零件的表面粗糙度和孔隙率增加。与使用原生粉末制成的试样相比,使用重复使用粉末制成的试样的机械性能和形状记忆功能有所下降,这主要归因于氧杂质和成型质量的下降。这项研究有助于在开发通过 LPBF 制造的性能关键型镍钛零件时更好地决定粉末的再利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers of Materials Science
Frontiers of Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.20
自引率
3.70%
发文量
515
期刊介绍: Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community. The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to): Biomaterials including biomimetics and biomineralization; Nano materials; Polymers and composites; New metallic materials; Advanced ceramics; Materials modeling and computation; Frontier materials synthesis and characterization; Novel methods for materials manufacturing; Materials performance; Materials applications in energy, information and biotechnology.
期刊最新文献
Revealing effects of powder reuse for LPBF-fabricated NiTi shape memory alloys Construction of a novel fluorescent nanoenzyme based on lanthanides for tumor theranostics In vitro evaluation of Zn–10Mg–xHA composites with the core–shell structure Femtosecond laser-induced graphene for temperature and ultrasensitive flexible strain sensing Adsorption and photocatalytic degradation performances of methyl orange-imprinted polysiloxane particles using TiO2 as matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1