Hongyan Liu
(, ), Xiaokang Wang
(, ), Fei Gao
(, ), Yutong Wang
(, ), Meng Sun
(, ), Deyu Xie
(, ), Wenmiao Chen
(, ), Zixi Kang
(, ), Rongming Wang
(, ), Weidong Fan
(, ), Daofeng Sun
(, )
{"title":"Pore surface fluorination and PDMS deposition within commercially viable metal-organic framework for efficient C2H2/CO2 separation","authors":"Hongyan Liu \n (, ), Xiaokang Wang \n (, ), Fei Gao \n (, ), Yutong Wang \n (, ), Meng Sun \n (, ), Deyu Xie \n (, ), Wenmiao Chen \n (, ), Zixi Kang \n (, ), Rongming Wang \n (, ), Weidong Fan \n (, ), Daofeng Sun \n (, )","doi":"10.1007/s40843-024-3091-9","DOIUrl":null,"url":null,"abstract":"<div><p>Removing CO<sub>2</sub> impurities from C<sub>2</sub>H<sub>2</sub>/CO<sub>2</sub> mixtures is an essential process for producing high-purity C<sub>2</sub>H<sub>2</sub> under high humidity. High-stability and low-cost metal-organic frameworks (MOFs) have great potential in C<sub>2</sub>H<sub>2</sub>/CO<sub>2</sub> industrial separation. However, due to the complementary adsorption of H<sub>2</sub>O and CO<sub>2</sub>, water vapor has a negative impact on the implementation of C<sub>2</sub>H<sub>2</sub> purification. Herein, we propose a synergistic strategy of pore surface functionalization and polydimethylsiloxane (PDMS) deposition to avoid the influence of water vapor while improving C<sub>2</sub>H<sub>2</sub>/CO<sub>2</sub> separation performance. A commercially available metal-organic framework (ALP-MOF-1) was used as a template to functionalize its pore surface with CH<sub>3</sub>, Br, and F. The optimized material ALP-MOF-1(F) exhibits the highest C<sub>2</sub>H<sub>2</sub> uptake (117.78 cm<sup>3</sup>/g at 298 K and 10<sup>6</sup> Pa) and C<sub>2</sub>H<sub>2</sub>/CO<sub>2</sub> uptake ratio (3.1) among ALP-MOF systems. Computational simulations show that the well-matched pore space and the significant electronegativity and polarizability of the fluorine groups on the pore surface jointly enhance the framework-C<sub>2</sub>H<sub>2</sub> interaction. Furthermore, the deposition of PDMS on ALP-MOF-1 and ALP-MOF-1(F) significantly improves their C<sub>2</sub>H<sub>2</sub>/CO<sub>2</sub> separation stability under 80% humidity conditions.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 11","pages":"3692 - 3699"},"PeriodicalIF":6.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3091-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Removing CO2 impurities from C2H2/CO2 mixtures is an essential process for producing high-purity C2H2 under high humidity. High-stability and low-cost metal-organic frameworks (MOFs) have great potential in C2H2/CO2 industrial separation. However, due to the complementary adsorption of H2O and CO2, water vapor has a negative impact on the implementation of C2H2 purification. Herein, we propose a synergistic strategy of pore surface functionalization and polydimethylsiloxane (PDMS) deposition to avoid the influence of water vapor while improving C2H2/CO2 separation performance. A commercially available metal-organic framework (ALP-MOF-1) was used as a template to functionalize its pore surface with CH3, Br, and F. The optimized material ALP-MOF-1(F) exhibits the highest C2H2 uptake (117.78 cm3/g at 298 K and 106 Pa) and C2H2/CO2 uptake ratio (3.1) among ALP-MOF systems. Computational simulations show that the well-matched pore space and the significant electronegativity and polarizability of the fluorine groups on the pore surface jointly enhance the framework-C2H2 interaction. Furthermore, the deposition of PDMS on ALP-MOF-1 and ALP-MOF-1(F) significantly improves their C2H2/CO2 separation stability under 80% humidity conditions.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.