Effects of polyurethane hardness on the propagation of acoustic signals from partial discharge

IF 4.4 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC High Voltage Pub Date : 2024-07-30 DOI:10.1049/hve2.12477
Abdul Samad, W. H. Siew, Martin Given, John Liggat, Igor Timoshkin
{"title":"Effects of polyurethane hardness on the propagation of acoustic signals from partial discharge","authors":"Abdul Samad,&nbsp;W. H. Siew,&nbsp;Martin Given,&nbsp;John Liggat,&nbsp;Igor Timoshkin","doi":"10.1049/hve2.12477","DOIUrl":null,"url":null,"abstract":"<p>Polymeric insulation is a critical component of high voltage systems. However, exposure to high electric stress can cause partial discharges (PDs) to occur and may result in the deterioration of insulation and lead to dielectric failure. These PD events are accompanied by the production of acoustic pressure impulses in the polymer. Detection of these acoustic pressure impulses can reveal the presence of PDs and locate their source. However, analysing the detected acoustic emission (AE) signal is challenging. The acoustic pressure source's nature and the propagating medium's properties, such as density, viscosity, and elasticity, significantly affect the propagating AE signal. The effects of the hardness of the polyurethane (PU) on the propagating AE signal are reported by the authors based on results obtained from laboratory experiments. It was observed that the decay rate in the magnitude of the acoustic impulse was high in PU at all hardness levels following an exponential behaviour. The analysis of the frequency spectra indicates that the higher frequency components attenuate more strongly with distance. These laboratory results can be valuable for engineers and industries as they provide valuable insight into how the physical characteristics of a material affect the propagation characteristics of AE signals during the detection and location of PD source using the AE detection technique.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"9 5","pages":"1125-1135"},"PeriodicalIF":4.4000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12477","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12477","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Polymeric insulation is a critical component of high voltage systems. However, exposure to high electric stress can cause partial discharges (PDs) to occur and may result in the deterioration of insulation and lead to dielectric failure. These PD events are accompanied by the production of acoustic pressure impulses in the polymer. Detection of these acoustic pressure impulses can reveal the presence of PDs and locate their source. However, analysing the detected acoustic emission (AE) signal is challenging. The acoustic pressure source's nature and the propagating medium's properties, such as density, viscosity, and elasticity, significantly affect the propagating AE signal. The effects of the hardness of the polyurethane (PU) on the propagating AE signal are reported by the authors based on results obtained from laboratory experiments. It was observed that the decay rate in the magnitude of the acoustic impulse was high in PU at all hardness levels following an exponential behaviour. The analysis of the frequency spectra indicates that the higher frequency components attenuate more strongly with distance. These laboratory results can be valuable for engineers and industries as they provide valuable insight into how the physical characteristics of a material affect the propagation characteristics of AE signals during the detection and location of PD source using the AE detection technique.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚氨酯硬度对局部放电声信号传播的影响
聚合物绝缘是高压系统的重要组成部分。然而,暴露在高电应力下会导致局部放电 (PD),并可能导致绝缘老化和介电失效。这些局部放电事件会在聚合物中产生声压脉冲。检测这些声压脉冲可以发现 PD 的存在并确定其来源。然而,分析检测到的声发射(AE)信号是一项挑战。声压源的性质和传播介质的特性(如密度、粘度和弹性)会对传播的声发射信号产生重大影响。作者根据实验室实验结果报告了聚氨酯(PU)硬度对传播 AE 信号的影响。据观察,在所有硬度水平下,聚氨酯的声脉冲幅度衰减率都很高,呈指数型。对频率谱的分析表明,高频成分随距离的增加而衰减得更厉害。这些实验室结果对工程师和工业界非常有价值,因为它们提供了有价值的见解,让他们了解在使用声发射检测技术检测和定位 PD 源时,材料的物理特性如何影响声发射信号的传播特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
High Voltage
High Voltage Energy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍: High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include: Electrical Insulation ● Outdoor, indoor, solid, liquid and gas insulation ● Transient voltages and overvoltage protection ● Nano-dielectrics and new insulation materials ● Condition monitoring and maintenance Discharge and plasmas, pulsed power ● Electrical discharge, plasma generation and applications ● Interactions of plasma with surfaces ● Pulsed power science and technology High-field effects ● Computation, measurements of Intensive Electromagnetic Field ● Electromagnetic compatibility ● Biomedical effects ● Environmental effects and protection High Voltage Engineering ● Design problems, testing and measuring techniques ● Equipment development and asset management ● Smart Grid, live line working ● AC/DC power electronics ● UHV power transmission Special Issues. Call for papers: Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf
期刊最新文献
Research on temperature distribution characteristics of oil-immersed power transformers based on fluid network decoupling On image transformation for partial discharge source identification in vehicle cable terminals of high-speed trains New insights on thermal ageing of electrical insulating oils as revealed from photoluminescence and absorption spectroscopy Energy regulation of impulse current generator modulated DC arc discharge Stress grading system optimisation for an inverter-fed rotating machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1