Ding Wen, Jing Feng, Ruiping Deng, Kai Li, Hongjie Zhang
{"title":"Zn/Pt dual-site single-atom driven difunctional superimposition-augmented sonosensitizer for sonodynamic therapy boosted ferroptosis of cancer","authors":"Ding Wen, Jing Feng, Ruiping Deng, Kai Li, Hongjie Zhang","doi":"10.1038/s41467-024-53488-8","DOIUrl":null,"url":null,"abstract":"<p>Sonodynamic therapy (SDT) as a non-invasive antitumor strategy has been widely concerned. However, the rapid electron (e<sup>-</sup>) and hole (h<sup>+</sup>) recombination of traditional inorganic semiconductor sonosensitizers under ultrasonic (US) stimulation greatly limits the production of reactive oxygen species (ROS). Herein, we report a unique Zn/Pt dual-site single-atom driven difunctional superimposition-augmented TiO<sub>2</sub>-based sonosensitizer (Zn/Pt SATs). Initially, we verify through theoretical calculation that the strongly coupled Zn and Pt atoms can assist electron excitation at the atomic level by increasing electron conductivity and excitation efficiency under US, respectively, thus effectively improving the yield of ROS. Additionally, Zn/Pt SATs can significantly enhance ferroptosis by producing more ROS and sonoexcited holes under US stimuli. Therefore, the establishment of dual-site single-atom system represents an innovative strategy to enhance SDT in cancer model of female mice and provides a typical example for the development of inorganic sonosensitizer in the field of antitumor therapy.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"25 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53488-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sonodynamic therapy (SDT) as a non-invasive antitumor strategy has been widely concerned. However, the rapid electron (e-) and hole (h+) recombination of traditional inorganic semiconductor sonosensitizers under ultrasonic (US) stimulation greatly limits the production of reactive oxygen species (ROS). Herein, we report a unique Zn/Pt dual-site single-atom driven difunctional superimposition-augmented TiO2-based sonosensitizer (Zn/Pt SATs). Initially, we verify through theoretical calculation that the strongly coupled Zn and Pt atoms can assist electron excitation at the atomic level by increasing electron conductivity and excitation efficiency under US, respectively, thus effectively improving the yield of ROS. Additionally, Zn/Pt SATs can significantly enhance ferroptosis by producing more ROS and sonoexcited holes under US stimuli. Therefore, the establishment of dual-site single-atom system represents an innovative strategy to enhance SDT in cancer model of female mice and provides a typical example for the development of inorganic sonosensitizer in the field of antitumor therapy.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.