Modeling of Diels–Alder Reversible Network Formation in Diffusion-Controlled Conditions

IF 5.1 1区 化学 Q1 POLYMER SCIENCE Macromolecules Pub Date : 2024-10-30 DOI:10.1021/acs.macromol.4c01616
Jessica Mangialetto, Robrecht Verhelle, Guy Van Assche, Niko Van den Brande
{"title":"Modeling of Diels–Alder Reversible Network Formation in Diffusion-Controlled Conditions","authors":"Jessica Mangialetto, Robrecht Verhelle, Guy Van Assche, Niko Van den Brande","doi":"10.1021/acs.macromol.4c01616","DOIUrl":null,"url":null,"abstract":"A novel mechanistic model is developed for a vitrifying covalent adaptable polymer network based on the thermoreversible furan-maleimide Diels–Alder (DA) cycloaddition. To account for the effect of diffusion limitations on the reaction rates, a diffusion-controlled encounter pair formation mechanism is introduced, with the related rates of formation and separation calculated using the Williams–Landel–Ferry equation. The kinetic, thermodynamic, and diffusion parameters are optimized using calorimetric data and the variation of the glass transition temperature (<i>T</i><sub>g</sub>) with time and/or temperature, leading to a set of parameters that can describe a specific thermosetting system in vitrifying conditions. These parameters are shown to be also valid for a second, chemically similar, reversible network having a comparable <i>T</i><sub>g</sub>. Lastly, the parameters obtained are used to simulate time–temperature-transformation (TTT) and continuous-heating-transformation (CHT) diagrams of these systems, including also the vitrified sections. With these results, this model proves to be a versatile tool suitable for the prediction of the effect of diffusion limitations for any time–temperature cure program, aiding in the accurate interpretation of analytical results related to these reversible networks. This is of particular interest for the design and processing of these self-healing and reprocessable materials.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"32 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c01616","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

A novel mechanistic model is developed for a vitrifying covalent adaptable polymer network based on the thermoreversible furan-maleimide Diels–Alder (DA) cycloaddition. To account for the effect of diffusion limitations on the reaction rates, a diffusion-controlled encounter pair formation mechanism is introduced, with the related rates of formation and separation calculated using the Williams–Landel–Ferry equation. The kinetic, thermodynamic, and diffusion parameters are optimized using calorimetric data and the variation of the glass transition temperature (Tg) with time and/or temperature, leading to a set of parameters that can describe a specific thermosetting system in vitrifying conditions. These parameters are shown to be also valid for a second, chemically similar, reversible network having a comparable Tg. Lastly, the parameters obtained are used to simulate time–temperature-transformation (TTT) and continuous-heating-transformation (CHT) diagrams of these systems, including also the vitrified sections. With these results, this model proves to be a versatile tool suitable for the prediction of the effect of diffusion limitations for any time–temperature cure program, aiding in the accurate interpretation of analytical results related to these reversible networks. This is of particular interest for the design and processing of these self-healing and reprocessable materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩散控制条件下的 Diels-Alder 可逆网络形成模型
在热可逆呋喃-马来酰亚胺 Diels-Alder (DA) 环加成法的基础上,为玻璃化共价适应性聚合物网络建立了一个新的机理模型。为了考虑扩散限制对反应速率的影响,引入了扩散控制的遇对形成机制,并使用 Williams-Landel-Ferry 方程计算了相关的形成和分离速率。利用量热数据和玻璃化转变温度(Tg)随时间和/或温度的变化,对动力学、热力学和扩散参数进行了优化,从而得出了一组可以描述玻璃化条件下特定热固性体系的参数。这些参数也适用于第二种化学性质相似、具有可比 Tg 的可逆网络。最后,获得的参数被用于模拟这些体系的时间-温度-转变(TTT)和连续-加热-转变(CHT)图,包括玻璃化部分。这些结果证明,该模型是一种多功能工具,适用于预测任何时间-温度固化程序的扩散限制效应,有助于准确解释与这些可逆网络有关的分析结果。这对于这些自愈合和可再加工材料的设计和加工具有特别重要的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
期刊最新文献
Critical Importance of Both Bond Breakage and Network Heterogeneity in Hysteresis Loop on Stress–Strain Curves and Scattering Patterns Solvent Exchange-Induced Microphase Separation and Structural Arrest to Form Glassy Hydrogels Physical and Chemical Responses of Amidine-Containing Polymers in the Capture and Release of CO2 N-Sulfonyl Guanidine Urea to Design Ultrastrong, Stable, and Recyclable Associative Dynamic Polyurea Networks Decisive Role of the Specific Nanosized Secondary Crystals on the Phase Transition of Poly(vinylidene fluoride) Induced by Melt Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1