Near-Infrared Light-Driven CO2 Reduction on Cup-Stacked Carbon Nanotubes

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-10-29 DOI:10.1002/anie.202415173
Suchan Song, Cuncun Xin, Wei Liu, Wenzhe Shang, Tianna Liu, Wentao Peng, Jungang Hou, Yantao Shi
{"title":"Near-Infrared Light-Driven CO2 Reduction on Cup-Stacked Carbon Nanotubes","authors":"Suchan Song, Cuncun Xin, Wei Liu, Wenzhe Shang, Tianna Liu, Wentao Peng, Jungang Hou, Yantao Shi","doi":"10.1002/anie.202415173","DOIUrl":null,"url":null,"abstract":"Carbon nanotubes feature one-dimensional nature of collective excitations, wherein strong confinement of surface plasmons severely hinders the liberation of hot electrons (HEs), posing grand challenges for their utilization in photochemistry. In this study, we prototypically achieved directed HEs flow and extraction in hybrid plasmonic CNN based on cup-stacked carbon nanotubes (CSCNTs), taking advantage of their privileged edge-plane sites. The localized pz electronic states and accessible intersubband plasmon excitations in the near-infrared (NIR) regime stands in striking contrast to the conventional concentric carbon nanotubes, as evidenced by combined photo-induced force microscopy (PiFM) and transient photocurrent response. The hybrid comprising intimately integrated CSCNTs-C3N4 effectively sustains interfacial electronic states and underlies the energy extraction out of plasmonic components. The CNN demonstrates almost near-unity NIR light-driven CO2 reduction to CO with a rate of 1.35 µmol g–1 h–1. This work sheds light on the exploitation of metal-free carbon-based plasmonic nanostructures for photocatalytic applications.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202415173","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon nanotubes feature one-dimensional nature of collective excitations, wherein strong confinement of surface plasmons severely hinders the liberation of hot electrons (HEs), posing grand challenges for their utilization in photochemistry. In this study, we prototypically achieved directed HEs flow and extraction in hybrid plasmonic CNN based on cup-stacked carbon nanotubes (CSCNTs), taking advantage of their privileged edge-plane sites. The localized pz electronic states and accessible intersubband plasmon excitations in the near-infrared (NIR) regime stands in striking contrast to the conventional concentric carbon nanotubes, as evidenced by combined photo-induced force microscopy (PiFM) and transient photocurrent response. The hybrid comprising intimately integrated CSCNTs-C3N4 effectively sustains interfacial electronic states and underlies the energy extraction out of plasmonic components. The CNN demonstrates almost near-unity NIR light-driven CO2 reduction to CO with a rate of 1.35 µmol g–1 h–1. This work sheds light on the exploitation of metal-free carbon-based plasmonic nanostructures for photocatalytic applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
杯状堆叠碳纳米管上的近红外线驱动的二氧化碳还原
碳纳米管具有集体激发的一维特性,其表面质子的强束缚性严重阻碍了热电子(HEs)的释放,为其在光化学中的应用带来了巨大挑战。在这项研究中,我们利用杯状叠层碳纳米管(CSCNTs)优越的边缘平面位点,在基于杯状叠层碳纳米管(CSCNTs)的混合质子 CNN 中原型地实现了定向 HEs 流动和提取。与传统的同心碳纳米管相比,它在近红外(NIR)范围内的局部 pz 电子态和可获得的带间等离子激发形成了鲜明对比,这一点已通过光诱导力显微镜(PiFM)和瞬态光电流响应得到证实。由紧密集成的 CSCNTs-C3N4 组成的混合体有效地维持了界面电子态,是等离子元件能量提取的基础。CNN 以 1.35 µmol g-1 h-1 的速率展示了近红外光驱动的二氧化碳还原为二氧化碳的过程,几乎接近统一。这项研究揭示了如何利用无金属碳基等离子纳米结构进行光催化应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Spiro-Carbon-Locking and Sulfur-Embedding Strategy for Constructing Deep-Red Organic Electroluminescent Emitter with High Efficiency. A Hypothesis on the Function of High-Valent Fe in NiFe (Hydr)oxide in the Oxygen-Evolution Reaction. Supramolecular Crystals based Fast Single Ion Conductor for Long-cycling Solid Zinc Batteries. Unprecedented Photoinduced-Electron-Transfer Probe with a Turn-ON Chemiluminescence Mode-of-Action. α-Nucleophilic Addition to α,β-Unsaturated Carbonyl Compounds via Photocatalytically Generated α-Carbonyl Carbocations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1