Resource-efficient electrodes with metallized woven-glass-grid current collectors for lithium-ion batteries.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2024-10-30 DOI:10.1002/cssc.202402233
Yen-Ming Li, Mohammadjafar Momeni, Huy Nguyen Dang Duc, Suvi von Bahder, Friedrich Roth, Wolfram Münchgesang, Manfred Danziger, Winfried Voitus, Dominik Nuss, Cornelia Sennewald, Tilmann Leisegang
{"title":"Resource-efficient electrodes with metallized woven-glass-grid current collectors for lithium-ion batteries.","authors":"Yen-Ming Li, Mohammadjafar Momeni, Huy Nguyen Dang Duc, Suvi von Bahder, Friedrich Roth, Wolfram Münchgesang, Manfred Danziger, Winfried Voitus, Dominik Nuss, Cornelia Sennewald, Tilmann Leisegang","doi":"10.1002/cssc.202402233","DOIUrl":null,"url":null,"abstract":"<p><p>A novel class of resource-efficient, woven-glass-grid current collectors (CCs) for Li-ion batteries is introduced. These CCs are based on ultra-light multifilament glass threads, woven to a grid and surrounded with a thin metal layer (equivalent to a 1 µm-thick metal foil) in a roll-to-roll physical vapor deposition process. This saves > 90% of the required Cu and Al metals and reduces the mass of the CCs by > 80%. At the same time, the gravimetric capacity of anodes with graphite and cathodes with LiCoO2 active material increases by 48% and 14%, respectively, while full cells are characterized by an increase of 26%. Thus, the specific energy can be improved by 25%. A complete anode and cathode fabrication process from preparing the CCs and electrodes to cells is described and demonstrated in coin cell format. Coin cells with woven-glass-grid CCs achieved 300 cycles with a capacity retention of 93%, a Coulombic efficiency of > 99.9%, and a higher rate capability until a C-rate of 3C. This technology opens up new possibilities for designing ultralight CCs with dedicated surface properties for Li and beyond Li batteries.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402233"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402233","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel class of resource-efficient, woven-glass-grid current collectors (CCs) for Li-ion batteries is introduced. These CCs are based on ultra-light multifilament glass threads, woven to a grid and surrounded with a thin metal layer (equivalent to a 1 µm-thick metal foil) in a roll-to-roll physical vapor deposition process. This saves > 90% of the required Cu and Al metals and reduces the mass of the CCs by > 80%. At the same time, the gravimetric capacity of anodes with graphite and cathodes with LiCoO2 active material increases by 48% and 14%, respectively, while full cells are characterized by an increase of 26%. Thus, the specific energy can be improved by 25%. A complete anode and cathode fabrication process from preparing the CCs and electrodes to cells is described and demonstrated in coin cell format. Coin cells with woven-glass-grid CCs achieved 300 cycles with a capacity retention of 93%, a Coulombic efficiency of > 99.9%, and a higher rate capability until a C-rate of 3C. This technology opens up new possibilities for designing ultralight CCs with dedicated surface properties for Li and beyond Li batteries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于锂离子电池的具有金属化玻璃编织栅集流器的资源节约型电极。
本文介绍了一类新型的资源节约型锂离子电池用玻璃编织栅集流器(CC)。这些 CC 以超轻多丝玻璃丝为基础,通过卷对卷物理气相沉积工艺编织成栅格,并在其周围镀上一层薄金属(相当于 1 µm 厚的金属箔)。这样可以节省 > 90% 所需的铜和铝金属,并将 CC 的质量减少 > 80%。同时,使用石墨的阳极和使用钴酸锂活性材料的阴极的重力容量分别增加了 48% 和 14%,而完整电池的重力容量增加了 26%。因此,比能量可提高 25%。本文介绍了从制备 CC 和电极到电池的完整阳极和阴极制造工艺,并以纽扣电池的形式进行了演示。采用玻璃编织栅 CC 的纽扣电池在循环 300 次后,容量保持率达到 93%,库仑效率大于 99.9%,并具有更高的速率能力,直到 C 速率达到 3C。这项技术为设计具有锂电池和超锂电池专用表面特性的超轻 CC 提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Covalent Organic Frameworks with Regulated Water Adsorption Sites for Efficient Cooling of Electronics. A TEMPO-N3 Complex Enables the Electrochemical C-H Azidation of N-Heterocycles through the Cleavage of Alkoxyamines. PEI-templated ZIF-8 nanoparticles impart the NF membrane with high Mg2+/Li+ separation performance. Green Electrochemical Point-of-Care Devices: Transient Materials and Sustainable Fabrication Methods. Metal-free N, P-Codoped Carbon for Syngas Production with Tunable Composition via CO2 Electrolysis: Addressing the Competition Between CO2 Reduction and H2 Evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1