Shan Wang, Zhijian Shi, Kunrong Du, Zhizhen Ren, Haifeng Feng, Jiaou Wang, Liang Wang, Dandan Cui, Yi Du, Weichang Hao
{"title":"Synergistic Surface Engineering of BiVO<sub>4</sub> Photoanodes for Improved Photoelectrochemical Water Oxidation.","authors":"Shan Wang, Zhijian Shi, Kunrong Du, Zhizhen Ren, Haifeng Feng, Jiaou Wang, Liang Wang, Dandan Cui, Yi Du, Weichang Hao","doi":"10.1002/smtd.202401443","DOIUrl":null,"url":null,"abstract":"<p><p>Surface engineering of BiVO<sub>4</sub> photoanodes is effective and feasible for photoelectrochemical (PEC) water splitting. To achieve superior PEC performance, however, more than one surface engineering method is usually indispensable, for which a positive synergistic effect is vital and thus highly desired. Herein, it is reported that the incorporation of borate moieties into ultrathin p-type NiO<sub>x</sub> catalysts can induce the reconfiguration of surface catalytic sites to form new highly active species, in addition to enhanced fast charge separation and transfer. The photocurrent density of BiVO<sub>4</sub> photoanodes is enhanced from 1.49 to 5.76 mA cm<sup>-2</sup> at 1.23 V versus reversible hydrogen electrode (RHE) under AM 1.5G illumination, which is achieved by successive modifications of NiO<sub>x</sub> and borate moieties. It is found that BO<sub>3</sub> groups anchored to Ni atoms by replacing the surface hydroxyl sites of NiO<sub>x</sub> catalysts not only increase the relative ratio of Ni<sup>3+</sup> species to facilitate charge transfer but also provide efficient active sites for H<sub>2</sub>O molecule adsorption and oxidation reactions. This work demonstrates the positive synergistic effect of these two surface engineering methods and provides an effective pathway to construct highly efficient and stable photoanodes for PEC water splitting.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401443"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401443","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Surface engineering of BiVO4 photoanodes is effective and feasible for photoelectrochemical (PEC) water splitting. To achieve superior PEC performance, however, more than one surface engineering method is usually indispensable, for which a positive synergistic effect is vital and thus highly desired. Herein, it is reported that the incorporation of borate moieties into ultrathin p-type NiOx catalysts can induce the reconfiguration of surface catalytic sites to form new highly active species, in addition to enhanced fast charge separation and transfer. The photocurrent density of BiVO4 photoanodes is enhanced from 1.49 to 5.76 mA cm-2 at 1.23 V versus reversible hydrogen electrode (RHE) under AM 1.5G illumination, which is achieved by successive modifications of NiOx and borate moieties. It is found that BO3 groups anchored to Ni atoms by replacing the surface hydroxyl sites of NiOx catalysts not only increase the relative ratio of Ni3+ species to facilitate charge transfer but also provide efficient active sites for H2O molecule adsorption and oxidation reactions. This work demonstrates the positive synergistic effect of these two surface engineering methods and provides an effective pathway to construct highly efficient and stable photoanodes for PEC water splitting.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.