Christine L. Plavchak , Allison Z. Werner , Elizabeth Betz , Davinia Salvachúa , Gregg T. Beckham , S. Kim Ratanathanawongs Williams
{"title":"Determination of particle number concentration for biological particles using AF4-MALS: Dependencies on light scattering model and refractive index","authors":"Christine L. Plavchak , Allison Z. Werner , Elizabeth Betz , Davinia Salvachúa , Gregg T. Beckham , S. Kim Ratanathanawongs Williams","doi":"10.1016/j.chroma.2024.465460","DOIUrl":null,"url":null,"abstract":"<div><div>Determining accurate counts and size distributions for biological particles (bioparticles) is crucial in wide-ranging fields, but current methods to this end are susceptible to bias from polydispersity in size. This bias can be mitigated by incorporating a separation step prior to characterization. For this reason, asymmetrical flow field-flow fractionation (AF4) with on-line multiangle light scattering (MALS) has become an important platform for determining particle size. AF4-MALS has also been increasingly used to report particle concentration, particularly for complex biological particles, yet the impact of light scattering models and particle refractive indices (RI) have not been quantitatively evaluated. Here, we develop an analysis workflow using AF4-MALS to simultaneously separate and determine particles sizes and concentrations. The impacts of the MALS particle counting model used to process data and the chosen RI value(s) on particle counts are systematically assessed for polystyrene latex (PSL) particles and bacterial outer membrane vesicles (OMVs) in the 20–500 nm size range. Across spherical models, PSL and OMV particle counts varied up to 13 % or 200 %, respectively. For the coated-sphere model used in the analysis of OMV samples, the sphere RI value greatly impacts particle counts. As the sphere RI value approaches the RI of the suspending medium, the model becomes increasingly sensitive to the light scattering signal-to-noise ratio ultimately causing erroneous particle counts. Overall, this work establishes the importance of selecting appropriate MALS models and RI values for bioparticles to obtain accurate counts and provides an AF4-MALS method to separate, enumerate, and size polydisperse bioparticles.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1737 ","pages":"Article 465460"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967324008343","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Determining accurate counts and size distributions for biological particles (bioparticles) is crucial in wide-ranging fields, but current methods to this end are susceptible to bias from polydispersity in size. This bias can be mitigated by incorporating a separation step prior to characterization. For this reason, asymmetrical flow field-flow fractionation (AF4) with on-line multiangle light scattering (MALS) has become an important platform for determining particle size. AF4-MALS has also been increasingly used to report particle concentration, particularly for complex biological particles, yet the impact of light scattering models and particle refractive indices (RI) have not been quantitatively evaluated. Here, we develop an analysis workflow using AF4-MALS to simultaneously separate and determine particles sizes and concentrations. The impacts of the MALS particle counting model used to process data and the chosen RI value(s) on particle counts are systematically assessed for polystyrene latex (PSL) particles and bacterial outer membrane vesicles (OMVs) in the 20–500 nm size range. Across spherical models, PSL and OMV particle counts varied up to 13 % or 200 %, respectively. For the coated-sphere model used in the analysis of OMV samples, the sphere RI value greatly impacts particle counts. As the sphere RI value approaches the RI of the suspending medium, the model becomes increasingly sensitive to the light scattering signal-to-noise ratio ultimately causing erroneous particle counts. Overall, this work establishes the importance of selecting appropriate MALS models and RI values for bioparticles to obtain accurate counts and provides an AF4-MALS method to separate, enumerate, and size polydisperse bioparticles.
期刊介绍:
The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.