Betsy Foxman, Elizabeth Salzman, Chelsie Gesierich, Sarah Gardner, Michelle Ammerman, Marisa Eisenberg, Krista Wigginton
{"title":"Wastewater surveillance of antibiotic resistant bacteria for public health action: Potential and Challenges.","authors":"Betsy Foxman, Elizabeth Salzman, Chelsie Gesierich, Sarah Gardner, Michelle Ammerman, Marisa Eisenberg, Krista Wigginton","doi":"10.1093/aje/kwae419","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic resistance is an urgent public health threat. Actions to reduce this threat include requiring prescriptions for antibiotic use, antibiotic stewardship programs, educational programs targeting patients and healthcare providers, and limiting antibiotic use in agriculture, aquaculture, and animal husbandry. Wastewater surveillance might complement clinical surveillance by tracking time/space variation essential for detecting outbreaks and evaluating efficacy of evidence-based interventions; identifying high-risk populations for targeted monitoring; providing early warning of the emergence and spread of antibiotic resistant bacteria and identifying novel antibiotic resistant threats. Wastewater surveillance was an effective early warning system for SARS-CoV-2 spread and detection of the emergence of new viral strains. In this data-driven commentary we explore whether monitoring wastewater for antibiotic resistant genes and/or bacteria resistant to antibiotics might provide useful information for public health action. Using carbapenem resistance as an example, we highlight technical challenges associated with using wastewater to quantify temporal/spatial trends in antibiotic resistant bacteria (ARBs) and antibiotic resistant genes (ARGs) and compare with clinical information. While ARGs and ARBs are detectable in wastewater enabling early detection of novel ARGs, quantitation of ARBs and ARGs with current methods is too variable to reliably track space/time variation.</p>","PeriodicalId":7472,"journal":{"name":"American journal of epidemiology","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/aje/kwae419","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Antibiotic resistance is an urgent public health threat. Actions to reduce this threat include requiring prescriptions for antibiotic use, antibiotic stewardship programs, educational programs targeting patients and healthcare providers, and limiting antibiotic use in agriculture, aquaculture, and animal husbandry. Wastewater surveillance might complement clinical surveillance by tracking time/space variation essential for detecting outbreaks and evaluating efficacy of evidence-based interventions; identifying high-risk populations for targeted monitoring; providing early warning of the emergence and spread of antibiotic resistant bacteria and identifying novel antibiotic resistant threats. Wastewater surveillance was an effective early warning system for SARS-CoV-2 spread and detection of the emergence of new viral strains. In this data-driven commentary we explore whether monitoring wastewater for antibiotic resistant genes and/or bacteria resistant to antibiotics might provide useful information for public health action. Using carbapenem resistance as an example, we highlight technical challenges associated with using wastewater to quantify temporal/spatial trends in antibiotic resistant bacteria (ARBs) and antibiotic resistant genes (ARGs) and compare with clinical information. While ARGs and ARBs are detectable in wastewater enabling early detection of novel ARGs, quantitation of ARBs and ARGs with current methods is too variable to reliably track space/time variation.
期刊介绍:
The American Journal of Epidemiology is the oldest and one of the premier epidemiologic journals devoted to the publication of empirical research findings, opinion pieces, and methodological developments in the field of epidemiologic research.
It is a peer-reviewed journal aimed at both fellow epidemiologists and those who use epidemiologic data, including public health workers and clinicians.