{"title":"Modeling longitudinal skewed functional data.","authors":"Mohammad Samsul Alam, Ana-Maria Staicu","doi":"10.1093/biomtc/ujae121","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces a model for longitudinal functional data analysis that accounts for pointwise skewness. The proposed procedure decouples the marginal pointwise variation from the complex longitudinal and functional dependence using copula methodology. Pointwise variation is described through parametric distribution functions that capture varying skewness and change smoothly both in time and over the functional argument. Joint dependence is quantified through a Gaussian copula with a low-rank approximation-based covariance. The introduced class of models provides a unifying platform for both pointwise quantile estimation and prediction of complete trajectories at new times. We investigate the methods numerically in simulations and discuss their application to a diffusion tensor imaging study of multiple sclerosis patients. This approach is implemented in the R package sLFDA that is publicly available on GitHub.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae121","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a model for longitudinal functional data analysis that accounts for pointwise skewness. The proposed procedure decouples the marginal pointwise variation from the complex longitudinal and functional dependence using copula methodology. Pointwise variation is described through parametric distribution functions that capture varying skewness and change smoothly both in time and over the functional argument. Joint dependence is quantified through a Gaussian copula with a low-rank approximation-based covariance. The introduced class of models provides a unifying platform for both pointwise quantile estimation and prediction of complete trajectories at new times. We investigate the methods numerically in simulations and discuss their application to a diffusion tensor imaging study of multiple sclerosis patients. This approach is implemented in the R package sLFDA that is publicly available on GitHub.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.