Has_circ_0002360 facilitates immune evasion by enhancing heterogeneous nuclear ribonucleoprotein A1 stability, thereby promoting malignant progression in non-small cell lung cancer

IF 3.3 3区 生物学 Q3 CELL BIOLOGY Experimental cell research Pub Date : 2024-10-29 DOI:10.1016/j.yexcr.2024.114312
Jun Fan , Lei Xue , Rongxin Lu, Jinyuan Liu, Jinhua Luo
{"title":"Has_circ_0002360 facilitates immune evasion by enhancing heterogeneous nuclear ribonucleoprotein A1 stability, thereby promoting malignant progression in non-small cell lung cancer","authors":"Jun Fan ,&nbsp;Lei Xue ,&nbsp;Rongxin Lu,&nbsp;Jinyuan Liu,&nbsp;Jinhua Luo","doi":"10.1016/j.yexcr.2024.114312","DOIUrl":null,"url":null,"abstract":"<div><div>Non-small cell lung cancer (NSCLC) is marked by complex molecular aberrations including differential expression of circular RNAs (circRNAs). hsa_circ_0002360, a circRNA, has been identified as overexpressed in NSCLC. This study aimed to evaluate the expression patterns of hsa_circ_0002360 and its potential role as an oncogenic factor in NSCLC. We analyzed two GEO datasets (GSE112214 and GSE158695) using R software to identify differentially expressed circRNAs. Quantitative reverse transcription PCR (qRT-PCR) assessed the expression of hsa_circ_0002360 in NSCLC tissues and cell lines compared to controls. We used siRNA and overexpression vectors to modulate hsa_circ_0002360 levels in A549 cells, followed by assays to assess proliferation, migration, invasion, apoptosis, and epithelial-mesenchymal transition (EMT). Interactions with RNA-binding proteins, specifically HNRNPA1, were investigated using RNA-pull down and RIP assays. In GEO datasets GSE112214 and GSE158695, hsa_circ_0002360 was identified as significantly overexpressed in NSCLC, a finding supported by qRT-PCR analyses showing higher levels in NSCLC tissues and cell lines compared to controls. Functional assays demonstrated that knockdown of hsa_circ_0002360 in A549 cells decreased proliferation, migration, invasion, and altered epithelial-mesenchymal transition marker expression, while inducing apoptosis, suggesting its oncogenic role. Conversely, overexpression promoted tumor characteristics, corroborated by <em>in vivo</em> xenograft models showing increased tumor growth. Hsa_circ_0002360's interaction with HNRNPA1, evidenced through RNA-pull down and RIP assays, implicates it in regulatory pathways that enhance NSCLC progression. This expression was also correlated with advanced TNM stages and metastasis, highlighting its potential as a therapeutic target. hsa_circ_0002360 acts as an oncogene in NSCLC, promoting tumor progression and metastasis through regulation of cell growth, apoptosis, and EMT processes. The interaction between hsa_circ_0002360 and HNRNPA1 suggests a novel mechanism of circRNA-mediated modulation of NSCLC pathology, providing potential targets for therapeutic intervention.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"443 2","pages":"Article 114312"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482724004038","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Non-small cell lung cancer (NSCLC) is marked by complex molecular aberrations including differential expression of circular RNAs (circRNAs). hsa_circ_0002360, a circRNA, has been identified as overexpressed in NSCLC. This study aimed to evaluate the expression patterns of hsa_circ_0002360 and its potential role as an oncogenic factor in NSCLC. We analyzed two GEO datasets (GSE112214 and GSE158695) using R software to identify differentially expressed circRNAs. Quantitative reverse transcription PCR (qRT-PCR) assessed the expression of hsa_circ_0002360 in NSCLC tissues and cell lines compared to controls. We used siRNA and overexpression vectors to modulate hsa_circ_0002360 levels in A549 cells, followed by assays to assess proliferation, migration, invasion, apoptosis, and epithelial-mesenchymal transition (EMT). Interactions with RNA-binding proteins, specifically HNRNPA1, were investigated using RNA-pull down and RIP assays. In GEO datasets GSE112214 and GSE158695, hsa_circ_0002360 was identified as significantly overexpressed in NSCLC, a finding supported by qRT-PCR analyses showing higher levels in NSCLC tissues and cell lines compared to controls. Functional assays demonstrated that knockdown of hsa_circ_0002360 in A549 cells decreased proliferation, migration, invasion, and altered epithelial-mesenchymal transition marker expression, while inducing apoptosis, suggesting its oncogenic role. Conversely, overexpression promoted tumor characteristics, corroborated by in vivo xenograft models showing increased tumor growth. Hsa_circ_0002360's interaction with HNRNPA1, evidenced through RNA-pull down and RIP assays, implicates it in regulatory pathways that enhance NSCLC progression. This expression was also correlated with advanced TNM stages and metastasis, highlighting its potential as a therapeutic target. hsa_circ_0002360 acts as an oncogene in NSCLC, promoting tumor progression and metastasis through regulation of cell growth, apoptosis, and EMT processes. The interaction between hsa_circ_0002360 and HNRNPA1 suggests a novel mechanism of circRNA-mediated modulation of NSCLC pathology, providing potential targets for therapeutic intervention.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Has_circ_0002360通过增强异质核核糖核蛋白A1的稳定性来促进免疫逃避,从而推动非小细胞肺癌的恶性进展。
非小细胞肺癌(NSCLC)具有复杂的分子畸变,包括环状核糖核酸(circRNA)的不同表达。本研究旨在评估 hsa_circ_0002360 的表达模式及其在 NSCLC 中作为致癌因子的潜在作用。我们使用 R 软件分析了两个 GEO 数据集(GSE112214 和 GSE158695),以确定差异表达的 circRNA。与对照组相比,定量反转录 PCR(qRT-PCR)评估了 hsa_circ_0002360 在 NSCLC 组织和细胞系中的表达。我们使用 siRNA 和过表达载体来调节 A549 细胞中 hsa_circ_0002360 的水平,然后用实验来评估细胞的增殖、迁移、侵袭、凋亡和上皮-间质转化(EMT)。利用 RNA-pull down 和 RIP 试验研究了与 RNA 结合蛋白(特别是 HNRNPA1)的相互作用。在 GEO 数据集 GSE112214 和 GSE158695 中,发现 hsa_circ_0002360 在 NSCLC 中显著过表达,qRT-PCR 分析表明与对照组相比,hsa_circ_0002360 在 NSCLC 组织和细胞系中的水平更高。功能测试表明,在 A549 细胞中敲除 hsa_circ_0002360 会减少细胞的增殖、迁移和侵袭,改变上皮-间质转化标志物的表达,同时诱导细胞凋亡,这表明它具有致癌作用。相反,过表达会促进肿瘤特征,体内异种移植模型显示肿瘤生长增加也证实了这一点。通过 RNA 拔除和 RIP 试验证明,Hsa_circ_0002360 与 HNRNPA1 相互作用,这表明它参与了促进 NSCLC 进展的调控途径。hsa_circ_0002360 在 NSCLC 中是一种癌基因,通过调控细胞生长、凋亡和 EMT 过程促进肿瘤进展和转移。hsa_circ_0002360与HNRNPA1之间的相互作用提示了circRNA介导的NSCLC病理学调节的新机制,为治疗干预提供了潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental cell research
Experimental cell research 医学-细胞生物学
CiteScore
7.20
自引率
0.00%
发文量
295
审稿时长
30 days
期刊介绍: Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.
期刊最新文献
Editorial Board The cystogenic effects of ouabain in autosomal dominant polycystic kidney disease require cell caveolae. Fbxo11 maintains mitochondrial function and prevents podocyte injury in adriamycin-induced nephropathy by mediating the ubiquitin degradation of Fosl2. MOTS-c relieves hepatocellular carcinoma resistance to TRAIL-induced apoptosis under hypoxic conditions by activating MEF2A. DDX18 influences chemotherapy sensitivity in colorectal cancer by regulating genomic stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1