A novel GFAP frameshift variant identified in a family with optico-retinal dysplasia and vision impairment.

IF 3.2 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Human molecular genetics Pub Date : 2024-12-06 DOI:10.1093/hmg/ddae134
Menachem V K Sarusie, Cecilia Rönnbäck, Cathrine Jespersgaard, Sif Baungaard, Yeasmeen Ali, Line Kessel, Søren T Christensen, Karen Brøndum-Nielsen, Kjeld Møllgård, Thomas Rosenberg, Lars A Larsen, Karen Grønskov
{"title":"A novel GFAP frameshift variant identified in a family with optico-retinal dysplasia and vision impairment.","authors":"Menachem V K Sarusie, Cecilia Rönnbäck, Cathrine Jespersgaard, Sif Baungaard, Yeasmeen Ali, Line Kessel, Søren T Christensen, Karen Brøndum-Nielsen, Kjeld Møllgård, Thomas Rosenberg, Lars A Larsen, Karen Grønskov","doi":"10.1093/hmg/ddae134","DOIUrl":null,"url":null,"abstract":"<p><p>Gain-of-function variants in GFAP leads to protein aggregation and is the cause of the severe neurodegenerative disorder Alexander Disease (AxD), while loss of GFAP function has been considered benign. Here, we investigated a six-generation family, where multiple individuals presented with gliosis of the optic nerve head and visual impairment. Whole genome sequencing (WGS) revealed a frameshift variant in GFAP (c.928dup, p.(Met310Asnfs*113)) segregating with disease. Analysis of human embryonic tissues revealed strong expression of GFAP in retinal neural progenitors. A zebrafish model verified that c.928dup does not result in extensive GFAP protein aggregation and zebrafish gfap loss-of-function mutants showed vision impairment and retinal dysplasia, characterized by a significant loss of Müller glia cells and photoreceptor cells. Our findings show how different mutational mechanisms can cause diverging phenotypes and reveal a novel function of GFAP in vertebrate eye development.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":"2145-2158"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddae134","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gain-of-function variants in GFAP leads to protein aggregation and is the cause of the severe neurodegenerative disorder Alexander Disease (AxD), while loss of GFAP function has been considered benign. Here, we investigated a six-generation family, where multiple individuals presented with gliosis of the optic nerve head and visual impairment. Whole genome sequencing (WGS) revealed a frameshift variant in GFAP (c.928dup, p.(Met310Asnfs*113)) segregating with disease. Analysis of human embryonic tissues revealed strong expression of GFAP in retinal neural progenitors. A zebrafish model verified that c.928dup does not result in extensive GFAP protein aggregation and zebrafish gfap loss-of-function mutants showed vision impairment and retinal dysplasia, characterized by a significant loss of Müller glia cells and photoreceptor cells. Our findings show how different mutational mechanisms can cause diverging phenotypes and reveal a novel function of GFAP in vertebrate eye development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在一个视网膜发育不良和视力障碍的家族中发现了一种新型 GFAP 框移变体。
GFAP 功能增益变异会导致蛋白质聚集,是严重神经退行性疾病亚历山大病(AxD)的病因,而 GFAP 功能缺失一直被认为是良性的。在这里,我们对一个六代同堂的家族进行了调查,该家族中有多人出现视神经头胶质细胞病变和视力障碍。全基因组测序(WGS)发现,GFAP(c.928dup, p.(Met310Asnfs*113))中的一个帧移位变异与疾病分离。对人类胚胎组织的分析表明,视网膜神经祖细胞中 GFAP 的表达很强。斑马鱼模型验证了 c.928dup 不会导致 GFAP 蛋白的广泛聚集,斑马鱼 gfap 功能缺失突变体表现出视力障碍和视网膜发育不良,其特征是 Müller 神经胶质细胞和感光细胞的显著缺失。我们的研究结果表明,不同的突变机制可导致不同的表型,并揭示了 GFAP 在脊椎动物眼发育过程中的新功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Human molecular genetics
Human molecular genetics 生物-生化与分子生物学
CiteScore
6.90
自引率
2.90%
发文量
294
审稿时长
2-4 weeks
期刊介绍: Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include: the molecular basis of human genetic disease developmental genetics cancer genetics neurogenetics chromosome and genome structure and function therapy of genetic disease stem cells in human genetic disease and therapy, including the application of iPS cells genome-wide association studies mouse and other models of human diseases functional genomics computational genomics In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.
期刊最新文献
Genome-wide meta-analysis identifies genetic risk loci for mono- and polyneuropathies in 983 477 individuals. Retinol dehydrogenase 10-mediated retinoic acid signaling regulates the neural crest cell microenvironment during enteric nervous system formation. PAX gene expression in autosomal dominant polycystic kidney disease contributes to cyst expansion and regulates a gene network associated with cyst growth. Exome sequencing identifies potential variants linked to cardiovascular disease in Caldas, Colombia: insights from the ORIGEN COLOMBIAN genome project. Integrated analysis of spatial and single-cell profiles reveals cell type-specific regulation of synaptic plasticity in human brain aging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1