Hierarchical hypergraph learning in association-weighted heterogeneous network for miRNA-disease association identification.

IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS IEEE/ACM Transactions on Computational Biology and Bioinformatics Pub Date : 2024-10-30 DOI:10.1109/TCBB.2024.3485788
Qiao Ning, Yaomiao Zhao, Jun Gao, Chen Chen, Minghao Yin
{"title":"Hierarchical hypergraph learning in association-weighted heterogeneous network for miRNA-disease association identification.","authors":"Qiao Ning, Yaomiao Zhao, Jun Gao, Chen Chen, Minghao Yin","doi":"10.1109/TCBB.2024.3485788","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) play a significant role in cell differentiation, biological development as well as the occurrence and growth of diseases. Although many computational methods contribute to predicting the association between miRNAs and diseases, they do not fully explore the attribute information contained in associated edges between miRNAs and diseases. In this study, we propose a new method, Hierarchical Hypergraph learning in Association-Weighted heterogeneous network for MiRNA-Disease association identification (HHAWMD). HHAWMD first adaptively fuses multi-view similarities based on channel attention and distinguishes the relevance of different associated relationships according to changes in expression levels of disease-related miRNAs, miRNA similarity information, and disease similarity information. Then, HHAWMD assigns edge weights and attribute features according to the association level to construct an association-weighted heterogeneous graph. Next, HHAWMD extracts the subgraph of the miRNA-disease node pair from the heterogeneous graph and builds the hyperedge (a kind of virtual edge) between the node pair to generate the hypergraph. Finally, HHAWMD proposes a hierarchical hypergraph learning approach, including node-aware attention and hyperedge-aware attention, which aggregates the abundant semantic information contained in deep and shallow neighborhoods to the hyperedge in the hypergraph. Our experiment results suggest that HHAWMD has better performance and can be used as a powerful tool for miRNA-disease association identification. The source code and data of HHAWMD are available at https://github.com/ningq669/HHAWMD/.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"PP ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TCBB.2024.3485788","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

MicroRNAs (miRNAs) play a significant role in cell differentiation, biological development as well as the occurrence and growth of diseases. Although many computational methods contribute to predicting the association between miRNAs and diseases, they do not fully explore the attribute information contained in associated edges between miRNAs and diseases. In this study, we propose a new method, Hierarchical Hypergraph learning in Association-Weighted heterogeneous network for MiRNA-Disease association identification (HHAWMD). HHAWMD first adaptively fuses multi-view similarities based on channel attention and distinguishes the relevance of different associated relationships according to changes in expression levels of disease-related miRNAs, miRNA similarity information, and disease similarity information. Then, HHAWMD assigns edge weights and attribute features according to the association level to construct an association-weighted heterogeneous graph. Next, HHAWMD extracts the subgraph of the miRNA-disease node pair from the heterogeneous graph and builds the hyperedge (a kind of virtual edge) between the node pair to generate the hypergraph. Finally, HHAWMD proposes a hierarchical hypergraph learning approach, including node-aware attention and hyperedge-aware attention, which aggregates the abundant semantic information contained in deep and shallow neighborhoods to the hyperedge in the hypergraph. Our experiment results suggest that HHAWMD has better performance and can be used as a powerful tool for miRNA-disease association identification. The source code and data of HHAWMD are available at https://github.com/ningq669/HHAWMD/.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 miRNA 与疾病关联识别的关联加权异构网络中的层次超图学习
微小核糖核酸(miRNA)在细胞分化、生物发育以及疾病的发生和发展中发挥着重要作用。虽然许多计算方法有助于预测 miRNA 与疾病之间的关联,但它们并没有充分挖掘 miRNA 与疾病之间关联边所包含的属性信息。在本研究中,我们提出了一种新方法--用于 MiRNA 与疾病关联识别的关联加权异构网络中的层次超图学习(HHAWMD)。HHAWMD 首先基于通道注意力自适应地融合多视图相似性,并根据疾病相关 miRNA 表达水平的变化、miRNA 相似性信息和疾病相似性信息区分不同关联关系的相关性。然后,HHAWMD 根据关联程度分配边权重和属性特征,构建关联加权异构图。接着,HHAWMD 从异质图中提取 miRNA-疾病节点对的子图,并在节点对之间建立超边(一种虚拟边),生成超图。最后,HHAWMD 提出了一种分层超图学习方法,包括节点感知注意力和超边感知注意力,将深层和浅层邻域中包含的丰富语义信息聚合到超图中的超边。实验结果表明,HHAWMD 具有更好的性能,可作为 miRNA 与疾病关联识别的有力工具。HHAWMD的源代码和数据可在https://github.com/ningq669/HHAWMD/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
6.70%
发文量
479
审稿时长
3 months
期刊介绍: IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system
期刊最新文献
iAnOxPep: a machine learning model for the identification of anti-oxidative peptides using ensemble learning. DeepLigType: Predicting Ligand Types of Protein-Ligand Binding Sites Using a Deep Learning Model. Performance Comparison between Deep Neural Network and Machine Learning based Classifiers for Huntington Disease Prediction from Human DNA Sequence. AI-based Computational Methods in Early Drug Discovery and Post Market Drug Assessment: A Survey. Enhancing Single-Cell RNA-seq Data Completeness with a Graph Learning Framework.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1