{"title":"Pharmacological Inhibition of Phosphoglycerate Kinase 1 Reduces OxiDative Stress and Restores Impaired Autophagy in Experimental Acute Pancreatitis.","authors":"Lin Chen, Zhihao Wang, Yuyan Zhang, Qingtian Zhu, Guotao Lu, Xiaowu Dong, Jiajia Pan, Keyan Wu, Weijuan Gong, Weiming Xiao, Yanbing Ding, Yanyan Zhang, Yaodong Wang","doi":"10.1007/s10753-024-02173-5","DOIUrl":null,"url":null,"abstract":"<p><p>Damage to pancreatic acinar cells (PAC) and intracellular metabolic disturbances play crucial roles in pancreatic necrosis during acute pancreatitis (AP). Phosphoglycerate kinase 1 (PGK1) is a crucial catalytic enzyme in glycolysis. However, the impact of PGK1-involving glycolysis in regulating metabolic necrosis in AP is unclear. Transcriptome analysis of pancreatic tissues revealed significant changes in the glycolysis pathway and PGK1 which positively correlated with the inflammatory response and oxidative stress injury in AP mice. Furthermore, we observed a substantial increase in PGK1 expression in damaged PAC, positively correlating with PAC necrosis. Treatment with NG52, a specific PGK1 inhibitor, ameliorated pancreatic necrosis, inflammatory damage, and oxidative stress. Transcriptomic data before and after NG52 treatment along with the Programmed Cell Death database confirmed that NG52 protected against PAC damage by rescuing impaired autophagy in AP. Additionally, the protective effect of NG52 was validated following pancreatic duct ligation. These findings underscore the involvement of PGK1 in AP pathogenesis, highlighting that PGK1 inhibition can mitigate AP-induced pancreatic necrosis, attenuate inflammatory and oxidative stress injury, and rescue impaired autophagy. Thus, the study findings suggest a promising interventional target for pancreatic necrosis, offering novel strategies for therapeutic approaches to clinical AP.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-024-02173-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Damage to pancreatic acinar cells (PAC) and intracellular metabolic disturbances play crucial roles in pancreatic necrosis during acute pancreatitis (AP). Phosphoglycerate kinase 1 (PGK1) is a crucial catalytic enzyme in glycolysis. However, the impact of PGK1-involving glycolysis in regulating metabolic necrosis in AP is unclear. Transcriptome analysis of pancreatic tissues revealed significant changes in the glycolysis pathway and PGK1 which positively correlated with the inflammatory response and oxidative stress injury in AP mice. Furthermore, we observed a substantial increase in PGK1 expression in damaged PAC, positively correlating with PAC necrosis. Treatment with NG52, a specific PGK1 inhibitor, ameliorated pancreatic necrosis, inflammatory damage, and oxidative stress. Transcriptomic data before and after NG52 treatment along with the Programmed Cell Death database confirmed that NG52 protected against PAC damage by rescuing impaired autophagy in AP. Additionally, the protective effect of NG52 was validated following pancreatic duct ligation. These findings underscore the involvement of PGK1 in AP pathogenesis, highlighting that PGK1 inhibition can mitigate AP-induced pancreatic necrosis, attenuate inflammatory and oxidative stress injury, and rescue impaired autophagy. Thus, the study findings suggest a promising interventional target for pancreatic necrosis, offering novel strategies for therapeutic approaches to clinical AP.
期刊介绍:
Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.