Georgia Kythreoti, Trias Thireou, Christos Karoussiotis, Zafiroula Georgoussi, Panagiota Gv Liggri, Dimitrios P Papachristos, Antonios Michaelakis, Vasileios Karras, Spyros E Zographos, Stefan Schulz, Kostas Iatrou
{"title":"Natural volatiles preventing mosquito biting: an integrated screening platform for accelerated discovery of ORco antagonists.","authors":"Georgia Kythreoti, Trias Thireou, Christos Karoussiotis, Zafiroula Georgoussi, Panagiota Gv Liggri, Dimitrios P Papachristos, Antonios Michaelakis, Vasileios Karras, Spyros E Zographos, Stefan Schulz, Kostas Iatrou","doi":"10.1016/j.jbc.2024.107939","DOIUrl":null,"url":null,"abstract":"<p><p>Insect olfactory receptors are heteromeric ligand-gated cation channels composed of an obligatory receptor subunit, ORco, and one of many variable subunits, ORx, in as yet undefined molar ratios. When expressed alone ex vivo, ORco forms homotetrameric channels gated by ORco-specific ligands acting as channel agonists. Using an insect cell-based system as a functional platform for expressing mosquito odorant receptors ex vivo, we identified small molecules of natural origin acting as specific ORco channel antagonists, orthosteric or allosteric relative to a postulated ORco agonist binding site, which cause severe inhibition of olfactory function in mosquitoes. In the present communication, we have compiled common structural features of such orthosteric antagonists and developed a ligand-based pharmacophore whose properties are deemed necessary for binding to the agonist binding site and causing inhibition of ORco's biological function. In silico screening of an available collection of natural volatile compounds with the pharmacophore resulted in identification of several ORco antagonist hits. Cell-based functional screening of the same compound collection resulted in the identification of several compounds acting as orthosteric and allosteric antagonists of ORco channel function ex vivo and inducing anosmic behaviors to Aedes albopictus mosquitoes in vivo. Comparison of the in silico screening results with those of the functional assays revealed that the pharmacophore predicted correctly 7 out of the 8 confirmed orthosteric antagonists and none of the allosteric ones. Because the pharmacophore screen produced additional hits that did not cause inhibition of the ORco channel function, we also generated a Support Vector Machine (SVM) model based on two descriptors of all pharmacophore hits. Training of the SVM on the ex vivo validated compound collection resulted in the selection of the confirmed orthosteric antagonists with a very low cross-validation out-of-sample misclassification rate. Employment of the combined pharmacophore-SVM platform for in silico screening of a larger collection of olfaction-relevant volatiles produced several new hits. Functional validation of randomly selected hits and rejected compounds from this screen confirmed the power of this virtual screening platform as a convenient tool for accelerating the pace of discovery of novel vector control agents. To the best of our knowledge, this study is the first one that combines a pharmacophore with a SVM model for identification of AgamORco antagonists and specifically orthosteric ones.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"107939"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.107939","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Insect olfactory receptors are heteromeric ligand-gated cation channels composed of an obligatory receptor subunit, ORco, and one of many variable subunits, ORx, in as yet undefined molar ratios. When expressed alone ex vivo, ORco forms homotetrameric channels gated by ORco-specific ligands acting as channel agonists. Using an insect cell-based system as a functional platform for expressing mosquito odorant receptors ex vivo, we identified small molecules of natural origin acting as specific ORco channel antagonists, orthosteric or allosteric relative to a postulated ORco agonist binding site, which cause severe inhibition of olfactory function in mosquitoes. In the present communication, we have compiled common structural features of such orthosteric antagonists and developed a ligand-based pharmacophore whose properties are deemed necessary for binding to the agonist binding site and causing inhibition of ORco's biological function. In silico screening of an available collection of natural volatile compounds with the pharmacophore resulted in identification of several ORco antagonist hits. Cell-based functional screening of the same compound collection resulted in the identification of several compounds acting as orthosteric and allosteric antagonists of ORco channel function ex vivo and inducing anosmic behaviors to Aedes albopictus mosquitoes in vivo. Comparison of the in silico screening results with those of the functional assays revealed that the pharmacophore predicted correctly 7 out of the 8 confirmed orthosteric antagonists and none of the allosteric ones. Because the pharmacophore screen produced additional hits that did not cause inhibition of the ORco channel function, we also generated a Support Vector Machine (SVM) model based on two descriptors of all pharmacophore hits. Training of the SVM on the ex vivo validated compound collection resulted in the selection of the confirmed orthosteric antagonists with a very low cross-validation out-of-sample misclassification rate. Employment of the combined pharmacophore-SVM platform for in silico screening of a larger collection of olfaction-relevant volatiles produced several new hits. Functional validation of randomly selected hits and rejected compounds from this screen confirmed the power of this virtual screening platform as a convenient tool for accelerating the pace of discovery of novel vector control agents. To the best of our knowledge, this study is the first one that combines a pharmacophore with a SVM model for identification of AgamORco antagonists and specifically orthosteric ones.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.