Stephen A Chetwynd, Richard J Ward, Graeme Milligan, Heidi C E Welch
{"title":"The GPCR adaptor protein Norbin controls the trafficking of C5aR1 and CXCR4 in mouse neutrophils.","authors":"Stephen A Chetwynd, Richard J Ward, Graeme Milligan, Heidi C E Welch","doi":"10.1016/j.jbc.2024.107940","DOIUrl":null,"url":null,"abstract":"<p><p>Norbin (Neurochondrin, NCDN) is a GPCR adaptor protein known for its importance in neuronal function. Norbin works by binding to numerous GPCRs, controlling their steady state trafficking and sometimes their agonist-induced internalisation, as well as their signalling. We recently showed that Norbin is expressed in neutrophils, limits the surface levels of the GPCRs C5aR1 and CXCR4 in neutrophils, and suppresses neutrophil-mediated innate immunity. Here, we identify C5aR1 and CXCR4 as direct Norbin interactors and used mice with myeloid-Norbin deficiency to investigate the role of Norbin in the trafficking of endogenous C5aR1 and CXCR4 in primary neutrophils by flow cytometry and cell fractionation. We show that Norbin mediates the agonist-induced internalisation of C5aR1 through a β-arrestin-dependent mechanism and limits the recycling of internalised C5aR1 and CXCR4 back to the cell surface. Norbin does not control the constitutive internalisation of C5aR1 and CXCR4, nor does it affect the agonist-induced internalisation of CXCR4. Norbin suppresses C5aR1 signalling in mouse neutrophils by limiting the C5a-stimulated membrane translocation of Tiam1, Vav, and PKCδ, and activation of Erk and p38 Mapk pathways, as well as Gα<sub>i</sub>-dependent ROS production. Our study demonstrates how Norbin suppresses C5aR1 and CXCR4 function in neutrophils and increases our understanding of the mechanisms through which Norbin regulates GPCR trafficking generally, by identifying its importance in β-arrestin recruitment, β-arrestin dependent agonist-induced receptor internalisation, and receptor recycling.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.107940","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Norbin (Neurochondrin, NCDN) is a GPCR adaptor protein known for its importance in neuronal function. Norbin works by binding to numerous GPCRs, controlling their steady state trafficking and sometimes their agonist-induced internalisation, as well as their signalling. We recently showed that Norbin is expressed in neutrophils, limits the surface levels of the GPCRs C5aR1 and CXCR4 in neutrophils, and suppresses neutrophil-mediated innate immunity. Here, we identify C5aR1 and CXCR4 as direct Norbin interactors and used mice with myeloid-Norbin deficiency to investigate the role of Norbin in the trafficking of endogenous C5aR1 and CXCR4 in primary neutrophils by flow cytometry and cell fractionation. We show that Norbin mediates the agonist-induced internalisation of C5aR1 through a β-arrestin-dependent mechanism and limits the recycling of internalised C5aR1 and CXCR4 back to the cell surface. Norbin does not control the constitutive internalisation of C5aR1 and CXCR4, nor does it affect the agonist-induced internalisation of CXCR4. Norbin suppresses C5aR1 signalling in mouse neutrophils by limiting the C5a-stimulated membrane translocation of Tiam1, Vav, and PKCδ, and activation of Erk and p38 Mapk pathways, as well as Gαi-dependent ROS production. Our study demonstrates how Norbin suppresses C5aR1 and CXCR4 function in neutrophils and increases our understanding of the mechanisms through which Norbin regulates GPCR trafficking generally, by identifying its importance in β-arrestin recruitment, β-arrestin dependent agonist-induced receptor internalisation, and receptor recycling.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.