Quantitative estimation of optical properties in bilayer media within the subdiffusive regime using tilted fiber-optic probe diffuse reflectance spectroscopy, part 2: probe design, realization, and experimental validation.
Philippe De Tillieux, Maxime Baillot, Pierre Marquet
{"title":"Quantitative estimation of optical properties in bilayer media within the subdiffusive regime using tilted fiber-optic probe diffuse reflectance spectroscopy, part 2: probe design, realization, and experimental validation.","authors":"Philippe De Tillieux, Maxime Baillot, Pierre Marquet","doi":"10.1117/1.JBO.29.10.105002","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Tissues like skin have a layered structure where each layer's optical properties vary significantly. However, traditional diffuse reflectance spectroscopy assumes a homogeneous medium, often leading to estimations that reflects the properties of neither layer. There's a clear need for probes that can precisely measure the optical properties of layered tissues.</p><p><strong>Aim: </strong>This paper aims to design a diffuse reflectance probe capable of accurately estimating the optical properties of bilayer tissues in the subdiffusive regime.</p><p><strong>Approach: </strong>Using Monte Carlo simulations, we evaluated key geometric factors-fiber placement, tilt angle, diameter, and numerical aperture-on optical property estimation, following the methodology in Part I. A robust design is proposed that balances accurate intrinsic optical property (IOP) calculations with practical experimental constraints.</p><p><strong>Results: </strong>The designed probe, featuring eight illumination and eight detection fibers with varying spacings and tilt angles. The estimation error of the IOP calculation for bilayer phantoms is less than 20% for top layers with thicknesses between 0.2 and 1.0 mm.</p><p><strong>Conclusion: </strong>Building on the approach from Part I and using a precise calibration, the probe effectively quantified and distinguished the IOPs of bilayer samples, particularly those relevant to early skin pathology detection and characterization.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 10","pages":"105002"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521147/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.10.105002","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Significance: Tissues like skin have a layered structure where each layer's optical properties vary significantly. However, traditional diffuse reflectance spectroscopy assumes a homogeneous medium, often leading to estimations that reflects the properties of neither layer. There's a clear need for probes that can precisely measure the optical properties of layered tissues.
Aim: This paper aims to design a diffuse reflectance probe capable of accurately estimating the optical properties of bilayer tissues in the subdiffusive regime.
Approach: Using Monte Carlo simulations, we evaluated key geometric factors-fiber placement, tilt angle, diameter, and numerical aperture-on optical property estimation, following the methodology in Part I. A robust design is proposed that balances accurate intrinsic optical property (IOP) calculations with practical experimental constraints.
Results: The designed probe, featuring eight illumination and eight detection fibers with varying spacings and tilt angles. The estimation error of the IOP calculation for bilayer phantoms is less than 20% for top layers with thicknesses between 0.2 and 1.0 mm.
Conclusion: Building on the approach from Part I and using a precise calibration, the probe effectively quantified and distinguished the IOPs of bilayer samples, particularly those relevant to early skin pathology detection and characterization.
期刊介绍:
The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.