{"title":"Key Synaptic Pathology in Autism Spectrum Disorder: Genetic Mechanisms and Recent Advances.","authors":"Yuan Zhang, Rui Tang, Zhi-Min Hu, Xi-Hao Wang, Xia Gao, Tao Wang, Ming-Xi Tang","doi":"10.31083/j.jin2310184","DOIUrl":null,"url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interactions and verbal communication, accompanied by symptoms of restricted and repetitive patterns of behavior or interest. Over the past 30 years, the morbidity of ASD has increased in most areas of the world. Although the pathogenesis of ASD is not fully understood, it has been associated with over 1000 genes or genomic loci, indicating the importance and complexity of the genetic mechanisms involved. This review focuses on the synaptic pathology of ASD and particularly on genetic variants involved in synaptic structure and functions. These include <i>SHANK</i>, <i>NLGN</i>, <i>NRXN</i>, <i>FMR1</i>, and <i>MECP2</i> as well as other potentially novel genes such as <i>CHD8</i>, <i>CHD2</i>, and <i>SYNGAP1</i> that could be core elements in ASD pathogenesis. Here, we summarize several pathological pathways supporting the hypothesis that synaptic pathology caused by genetic mutations may be the pathogenic basis for ASD.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"23 10","pages":"184"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of integrative neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/j.jin2310184","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interactions and verbal communication, accompanied by symptoms of restricted and repetitive patterns of behavior or interest. Over the past 30 years, the morbidity of ASD has increased in most areas of the world. Although the pathogenesis of ASD is not fully understood, it has been associated with over 1000 genes or genomic loci, indicating the importance and complexity of the genetic mechanisms involved. This review focuses on the synaptic pathology of ASD and particularly on genetic variants involved in synaptic structure and functions. These include SHANK, NLGN, NRXN, FMR1, and MECP2 as well as other potentially novel genes such as CHD8, CHD2, and SYNGAP1 that could be core elements in ASD pathogenesis. Here, we summarize several pathological pathways supporting the hypothesis that synaptic pathology caused by genetic mutations may be the pathogenic basis for ASD.
期刊介绍:
JIN is an international peer-reviewed, open access journal. JIN publishes leading-edge research at the interface of theoretical and experimental neuroscience, focusing across hierarchical levels of brain organization to better understand how diverse functions are integrated. We encourage submissions from scientists of all specialties that relate to brain functioning.