Designing of new functionalized imidazolium based ionic liquids attached to the antracene derivatives and investigation on the influence of intramolecular hydrogen bondings in anions on their intermolecular hydrogen bondings and some of the other properties: A DFT M06-2X-GD3 study
{"title":"Designing of new functionalized imidazolium based ionic liquids attached to the antracene derivatives and investigation on the influence of intramolecular hydrogen bondings in anions on their intermolecular hydrogen bondings and some of the other properties: A DFT M06-2X-GD3 study","authors":"Farzad Alijani Chakoli, Khatereh Ghauri, Farhad Shirini","doi":"10.1016/j.jmgm.2024.108885","DOIUrl":null,"url":null,"abstract":"<div><div>To promote the development of new functionalized ionic liquids, it is necessary to get a deeper insight into their features of physicochemical and electronic and molecular structure. In this study, the interaction energies and structural and vibrational frequencies parameters in accompanied with some of the physiochemical, electronic and optic attributes of ionic liquids designed by the covalently attachement of imidazolium to anthracene derivatives ([X-AnMIM][A2] and [X-AnMIM][A3], X: NH<sub>2</sub>, OH, OMe, H, Cl, CHO, CN and NO<sub>2</sub>) ILs have been evaluated. Two conjugate bases of acids 1,3,5-pentanetriol (A2) and 3-(2-hydroxyethyl)-1,3,5-pentanetriol (A3) are used as anions which have two and three intramolecular hydrogen bonds, respectively. Based on the results of calculations at M06-2X-GD3/6–311++(d,p) level of theory, the differences in these properties in addition to the structural type of anions and cations can be attributed to the cation-anion, intra and intermolecular hydrogen bonding, interactions in ionic liquids. The results depict that the ILs based on A2 anions form stronger hydrogen bonds with [X-AnMIM]<sup>+</sup> cations. The potency of interaction between cations and anion reduces with the increasement in the number of intramolecular hydrogen bonds and also decreasement in the basic strength in the anionic part. A clear red shift is observed between [X-AnMIM][A2] and [X-AnMIM][A3] ILs and isolated anthracene, which is a clear manifestation of the effect of the imidazolium cation on the electronic energy levels of anthracene. It can be expected that the studied ILs are not electrochemically stable during the electrochemistry applications.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"134 ","pages":"Article 108885"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326324001852","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
To promote the development of new functionalized ionic liquids, it is necessary to get a deeper insight into their features of physicochemical and electronic and molecular structure. In this study, the interaction energies and structural and vibrational frequencies parameters in accompanied with some of the physiochemical, electronic and optic attributes of ionic liquids designed by the covalently attachement of imidazolium to anthracene derivatives ([X-AnMIM][A2] and [X-AnMIM][A3], X: NH2, OH, OMe, H, Cl, CHO, CN and NO2) ILs have been evaluated. Two conjugate bases of acids 1,3,5-pentanetriol (A2) and 3-(2-hydroxyethyl)-1,3,5-pentanetriol (A3) are used as anions which have two and three intramolecular hydrogen bonds, respectively. Based on the results of calculations at M06-2X-GD3/6–311++(d,p) level of theory, the differences in these properties in addition to the structural type of anions and cations can be attributed to the cation-anion, intra and intermolecular hydrogen bonding, interactions in ionic liquids. The results depict that the ILs based on A2 anions form stronger hydrogen bonds with [X-AnMIM]+ cations. The potency of interaction between cations and anion reduces with the increasement in the number of intramolecular hydrogen bonds and also decreasement in the basic strength in the anionic part. A clear red shift is observed between [X-AnMIM][A2] and [X-AnMIM][A3] ILs and isolated anthracene, which is a clear manifestation of the effect of the imidazolium cation on the electronic energy levels of anthracene. It can be expected that the studied ILs are not electrochemically stable during the electrochemistry applications.
期刊介绍:
The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design.
As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.