{"title":"Artificial neural network-based prediction of multiple sclerosis using blood-based metabolomics data","authors":"Nasar Ata , Insha Zahoor , Nasrul Hoda , Syed Mohammed Adnan , Senthilkumar Vijayakumar , Filious Louis , Laila Poisson , Ramandeep Rattan , Nitesh Kumar , Mirela Cerghet , Shailendra Giri","doi":"10.1016/j.msard.2024.105942","DOIUrl":null,"url":null,"abstract":"<div><div>Multiple sclerosis (MS) remains a challenging neurological condition for diagnosis and management and is often detected in late stages, delaying treatment. Artificial intelligence (AI) is emerging as a promising approach to extracting MS information when applied to different patient datasets. Given the critical role of metabolites in MS profiling, metabolomics data may be an ideal platform for the application of AI to predict disease. In the present study, a machine-learning (ML) approach was used for a detailed analysis of metabolite profiles and related pathways in patients with MS and healthy controls (HC). This approach identified unique alterations in biochemical metabolites and their correlation with disease severity parameters. To enhance the efficiency of using metabolic profiles to determine disease severity or the presence of MS, we trained an AI model on a large volume of blood-based metabolomics datasets. We constructed this model using an artificial neural network (ANN) architecture with perceptrons. Data were divided into training, validation, and testing sets to determine model accuracy. After training, accuracy reached 87 %, sensitivity was 82.5 %, specificity was 89 %, and precision was 77.3 %. Thus, the developed model seems highly robust, generalizable with a wide scope and can handle large amounts of data, which could potentially assist neurologists. However, a large multicenter cohort study is necessary for further validation of large-scale datasets to allow the integration of AI in clinical settings for accurate diagnosis and improved MS management.</div></div>","PeriodicalId":18958,"journal":{"name":"Multiple sclerosis and related disorders","volume":"92 ","pages":"Article 105942"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiple sclerosis and related disorders","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211034824005182","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple sclerosis (MS) remains a challenging neurological condition for diagnosis and management and is often detected in late stages, delaying treatment. Artificial intelligence (AI) is emerging as a promising approach to extracting MS information when applied to different patient datasets. Given the critical role of metabolites in MS profiling, metabolomics data may be an ideal platform for the application of AI to predict disease. In the present study, a machine-learning (ML) approach was used for a detailed analysis of metabolite profiles and related pathways in patients with MS and healthy controls (HC). This approach identified unique alterations in biochemical metabolites and their correlation with disease severity parameters. To enhance the efficiency of using metabolic profiles to determine disease severity or the presence of MS, we trained an AI model on a large volume of blood-based metabolomics datasets. We constructed this model using an artificial neural network (ANN) architecture with perceptrons. Data were divided into training, validation, and testing sets to determine model accuracy. After training, accuracy reached 87 %, sensitivity was 82.5 %, specificity was 89 %, and precision was 77.3 %. Thus, the developed model seems highly robust, generalizable with a wide scope and can handle large amounts of data, which could potentially assist neurologists. However, a large multicenter cohort study is necessary for further validation of large-scale datasets to allow the integration of AI in clinical settings for accurate diagnosis and improved MS management.
期刊介绍:
Multiple Sclerosis is an area of ever expanding research and escalating publications. Multiple Sclerosis and Related Disorders is a wide ranging international journal supported by key researchers from all neuroscience domains that focus on MS and associated disease of the central nervous system. The primary aim of this new journal is the rapid publication of high quality original research in the field. Important secondary aims will be timely updates and editorials on important scientific and clinical care advances, controversies in the field, and invited opinion articles from current thought leaders on topical issues. One section of the journal will focus on teaching, written to enhance the practice of community and academic neurologists involved in the care of MS patients. Summaries of key articles written for a lay audience will be provided as an on-line resource.
A team of four chief editors is supported by leading section editors who will commission and appraise original and review articles concerning: clinical neurology, neuroimaging, neuropathology, neuroepidemiology, therapeutics, genetics / transcriptomics, experimental models, neuroimmunology, biomarkers, neuropsychology, neurorehabilitation, measurement scales, teaching, neuroethics and lay communication.