Isoform-specific distribution of 14–3-3 proteins in the hippocampus of streptozotocin-induced diabetic rats

IF 2.5 4区 医学 Q3 NEUROSCIENCES Neuroscience Letters Pub Date : 2024-10-28 DOI:10.1016/j.neulet.2024.138027
Sachie Sasaki-Hamada , Arisa Hara , Yume Tainaka , Sho Satoh , Jun-Ichiro Oka , Hitoshi Ishibashi
{"title":"Isoform-specific distribution of 14–3-3 proteins in the hippocampus of streptozotocin-induced diabetic rats","authors":"Sachie Sasaki-Hamada ,&nbsp;Arisa Hara ,&nbsp;Yume Tainaka ,&nbsp;Sho Satoh ,&nbsp;Jun-Ichiro Oka ,&nbsp;Hitoshi Ishibashi","doi":"10.1016/j.neulet.2024.138027","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetes mellitus is associated with cognitive deficits in humans and animal models. These deficits are paralleled by neurophysiological and structural changes in the central nervous system, particularly in the hippocampus, which plays an important role in memory formation. We previously reported that the magnitude of long-term potentiation at hippocampal Schaffer collateral-CA1 synapses was significantly impaired in streptozotocin (STZ)-induced type 1 diabetic rats (STZ rats). The present study investigated the mechanisms underlying morphological changes in the hippocampus of STZ rats. We performed a proteomic analysis of the hippocampus of STZ rats using two-dimensional gel electrophoresis followed by mass spectrometry. The distribution of 14–3-3 proteins identified by the proteomic analysis was then examined using immunohistochemistry. The results obtained revealed that 14–3-3 η immunoreactivity in the dorsal hippocampus was weaker in STZ rats than in age-matched control rats. Moreover, the density of glial fibrillary acidic protein-immunoreactive astrocytes in the dorsal hippocampus of STZ rats was increased, whereas 14–3-3 η immunoreactivity in astrocytes and neurons in the dentate gyrus was significantly decreased. These results suggest that changes in 14–3-3 η expression are involved in hippocampal astrogliosis or/and neurogenesis in STZ rats.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394024004063","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes mellitus is associated with cognitive deficits in humans and animal models. These deficits are paralleled by neurophysiological and structural changes in the central nervous system, particularly in the hippocampus, which plays an important role in memory formation. We previously reported that the magnitude of long-term potentiation at hippocampal Schaffer collateral-CA1 synapses was significantly impaired in streptozotocin (STZ)-induced type 1 diabetic rats (STZ rats). The present study investigated the mechanisms underlying morphological changes in the hippocampus of STZ rats. We performed a proteomic analysis of the hippocampus of STZ rats using two-dimensional gel electrophoresis followed by mass spectrometry. The distribution of 14–3-3 proteins identified by the proteomic analysis was then examined using immunohistochemistry. The results obtained revealed that 14–3-3 η immunoreactivity in the dorsal hippocampus was weaker in STZ rats than in age-matched control rats. Moreover, the density of glial fibrillary acidic protein-immunoreactive astrocytes in the dorsal hippocampus of STZ rats was increased, whereas 14–3-3 η immunoreactivity in astrocytes and neurons in the dentate gyrus was significantly decreased. These results suggest that changes in 14–3-3 η expression are involved in hippocampal astrogliosis or/and neurogenesis in STZ rats.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
链脲佐菌素诱导的糖尿病大鼠海马中 14-3-3 蛋白的同工酶特异性分布。
糖尿病与人类和动物模型的认知缺陷有关。这些缺陷与中枢神经系统,尤其是在记忆形成过程中起重要作用的海马体的神经生理学和结构变化同时发生。我们以前曾报道过,在链脲佐菌素(STZ)诱导的 1 型糖尿病大鼠(STZ 大鼠)中,海马沙弗侧索-CA1 突触的长期电位显著减弱。本研究探讨了 STZ 大鼠海马形态学变化的机制。我们采用二维凝胶电泳法和质谱法对 STZ 大鼠的海马进行了蛋白质组分析。然后使用免疫组织化学方法检测了蛋白质组分析所确定的 14-3-3 蛋白的分布。结果显示,STZ 大鼠海马背侧的 14-3-3 η 免疫反应弱于年龄匹配的对照组大鼠。此外,STZ 大鼠海马背侧神经胶质纤维酸性蛋白免疫反应性星形胶质细胞的密度增加,而齿状回中星形胶质细胞和神经元的 14-3-3 η 免疫反应性显著降低。这些结果表明,14-3-3 η表达的变化参与了STZ大鼠海马星形胶质细胞或/和神经发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroscience Letters
Neuroscience Letters 医学-神经科学
CiteScore
5.20
自引率
0.00%
发文量
408
审稿时长
50 days
期刊介绍: Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.
期刊最新文献
Effects of Type II Diabetes on upper extremity muscle characteristics in older adults Central administration of galanin-like peptide (GALP) causes short-term orexigenic effects in broilers: Mediatory role of NPY1 and D1 receptors. Cinnamaldehyde induces a TRPA1-mediated nociceptive behavior in planarians. Fatty acid-binding protein 7 gene deletion promotes decreases in brain cannabinoid type 1 receptor binding. Optimized primary dorsal root ganglion cell culture protocol for reliable K+ current patch-clamp recordings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1