Exploring the Regulatory Interaction of Differentially Expressed Proteins in Cleft Palate Induced by Retinoic Acid.

IF 1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Protein and Peptide Letters Pub Date : 2024-10-25 DOI:10.2174/0109298665308502240820115618
Liyun Chen, Aiwei Ma, Lewen Jiang, Jufeng Fan, Wenshi Jiang, Mengjing Xu, Xujue Bai, Jianda Zhou, Wancong Zhang, Shijie Tang
{"title":"Exploring the Regulatory Interaction of Differentially Expressed Proteins in Cleft Palate Induced by Retinoic Acid.","authors":"Liyun Chen, Aiwei Ma, Lewen Jiang, Jufeng Fan, Wenshi Jiang, Mengjing Xu, Xujue Bai, Jianda Zhou, Wancong Zhang, Shijie Tang","doi":"10.2174/0109298665308502240820115618","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to identify novel proteins involved in retinoic acid (RA)-induced embryonic cleft palate development.</p><p><strong>Method: </strong>The palate tissues of the control and RA-treated E14.5 were dissected and subjected to iTRAQ-based proteomic analysis.</p><p><strong>Results: </strong>Differential expression analysis identified 196 significantly upregulated and 149 downregulated considerably proteins in RA-induced palate tissues. Comprehensive Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed the significant involvement of cytoplasmic translation, ribosome biogenesis, glycolysis/gluconeogenesis, and glutathione metabolism pathways in cleft palate pathogenesis triggered by RA. In particular, ribosome-related pathways were highly enriched, while glycolysis was disrupted. Protein-protein interaction analysis, facilitated by the STRING database, revealed a tightly interconnected network of differentially expressed proteins. Further analysis using the cytoHubba plugin in Cytoscape identified ten hub proteins, including Eif4a1, Gapdh, Eno1, Imp3, Rps20, Rps27a, Eef2, Hsp90ab1, Rpl19, and Rps16, indicating their potential roles in RA-induced cleft palate development, and thus positioning them as potential biomarkers for cleft palate.</p><p><strong>Conclusion: </strong>These findings provide valuable insights into the proteomic changes associated with RA-induced cleft palate and shed light on key pathways and proteins that can contribute significantly to the pathogenesis of this congenital condition.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein and Peptide Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0109298665308502240820115618","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study aimed to identify novel proteins involved in retinoic acid (RA)-induced embryonic cleft palate development.

Method: The palate tissues of the control and RA-treated E14.5 were dissected and subjected to iTRAQ-based proteomic analysis.

Results: Differential expression analysis identified 196 significantly upregulated and 149 downregulated considerably proteins in RA-induced palate tissues. Comprehensive Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed the significant involvement of cytoplasmic translation, ribosome biogenesis, glycolysis/gluconeogenesis, and glutathione metabolism pathways in cleft palate pathogenesis triggered by RA. In particular, ribosome-related pathways were highly enriched, while glycolysis was disrupted. Protein-protein interaction analysis, facilitated by the STRING database, revealed a tightly interconnected network of differentially expressed proteins. Further analysis using the cytoHubba plugin in Cytoscape identified ten hub proteins, including Eif4a1, Gapdh, Eno1, Imp3, Rps20, Rps27a, Eef2, Hsp90ab1, Rpl19, and Rps16, indicating their potential roles in RA-induced cleft palate development, and thus positioning them as potential biomarkers for cleft palate.

Conclusion: These findings provide valuable insights into the proteomic changes associated with RA-induced cleft palate and shed light on key pathways and proteins that can contribute significantly to the pathogenesis of this congenital condition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索维甲酸诱导的腭裂中不同表达蛋白的调控相互作用
目的:本研究旨在鉴定参与视黄酸(RA)诱导胚胎腭裂发育的新型蛋白质:本研究旨在鉴定参与视黄酸(RA)诱导的胚胎腭裂发育的新型蛋白质:方法:解剖E14.5对照组和RA处理组的腭裂组织,并进行基于iTRAQ的蛋白质组分析:结果:差异表达分析在RA诱导的腭组织中发现了196个明显上调的蛋白和149个明显下调的蛋白。基因本体和京都基因组百科全书的综合富集分析表明,细胞质翻译、核糖体生物发生、糖酵解/糖原生成和谷胱甘肽代谢途径在 RA 引发的腭裂发病机制中有重要参与。其中,核糖体相关通路高度富集,而糖酵解则受到破坏。利用 STRING 数据库进行的蛋白质-蛋白质相互作用分析揭示了一个紧密相连的差异表达蛋白质网络。利用Cytoscape中的cytoHubba插件进行的进一步分析发现了10个枢纽蛋白,包括Eif4a1、Gapdh、Eno1、Imp3、Rps20、Rps27a、Eef2、Hsp90ab1、Rpl19和Rps16,这表明它们在RA诱导的腭裂发育过程中可能发挥作用,从而将它们定位为腭裂的潜在生物标记物:这些发现为了解与 RA 诱导的腭裂相关的蛋白质组变化提供了宝贵的信息,并揭示了可能对这种先天性疾病的发病机制有重大影响的关键通路和蛋白质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Protein and Peptide Letters
Protein and Peptide Letters 生物-生化与分子生物学
CiteScore
2.90
自引率
0.00%
发文量
98
审稿时长
2 months
期刊介绍: Protein & Peptide Letters publishes letters, original research papers, mini-reviews and guest edited issues in all important aspects of protein and peptide research, including structural studies, advances in recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, and drug design. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallization and preliminary structure determination of biologically important proteins are considered only if they include significant new approaches or deal with proteins of immediate importance, and preliminary structure determinations of biologically important proteins. Purely theoretical/review papers should provide new insight into the principles of protein/peptide structure and function. Manuscripts describing computational work should include some experimental data to provide confirmation of the results of calculations. Protein & Peptide Letters focuses on: Structure Studies Advances in Recombinant Expression Drug Design Chemical Synthesis Function Pharmacology Enzymology Conformational Analysis Immunology Biotechnology Protein Engineering Protein Folding Sequencing Molecular Recognition Purification and Analysis
期刊最新文献
Exploring the Therapeutic Potential of Noncoding RNAs in Alzheimer's Disease. Honeybee Venom: A Potential Source of Anticancer Components. Comparative Analysis of IMT-P8 and LDP12 Cell-Penetrating Peptides in Increasing Immunostimulatory Properties of HIV-1 Nef-MPER-V3 Antigen. Aloperine Attenuates UVB-induced Damage in Skin Fibroblasts Via Activating TFE3/Beclin-1-Mediated Autophagy. Ferroptosis as a Therapeutic Target in Neurodegenerative Diseases: Exploring the Mechanisms and Potential of Treating Alzheimer's Disease and Parkinson's Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1