Virendra S Gomase, Suchita P Dhamane, Kiran R Kemkar, Pavan G Kakade, Abhay D Sakhare
{"title":"Immunoproteomics: Approach to Diagnostic and Vaccine Development.","authors":"Virendra S Gomase, Suchita P Dhamane, Kiran R Kemkar, Pavan G Kakade, Abhay D Sakhare","doi":"10.2174/0109298665342261240912105111","DOIUrl":null,"url":null,"abstract":"<p><p>The study of large protein sets (proteomics) involved in the immunological reaction is known as immunoproteomics. The methodology of immunoproteomics plays a major role in identifying possible vaccine candidates that could protect against pathogenic infection. The study of immunogenic proteins that are expressed during the outset of infection is the focus of the crosstalk between proteomics and immune protection antigens utilizing serum. Peptide presentation by MHC provides the new 'window' into changes that occur in the cell. Thus, there is strong, intense pressure on the pathogen that has been mutated in such an unusual manner that it can bypass the MHC peptide presentation by the MHC molecule. The pathogen's ability to evade the immune system is strongly restricted by the two unique distinct properties of MHC molecules, i.e., polygenic and polymorphic properties. MHC-I restriction epitope identification has traditionally been accomplished using genetic motif prediction. The study of immune system proteins and their interactions is the main emphasis of the specialist field of immunoproteomics within proteomics. Methodologies include mass spectrometry (MS), SRM assay, MALDI-TOF, Chromatography, ELISA, 2DG PAGE, and bioinformatics tools. Challenges are the complexity of the immune system, protein abundance and dynamics, sample variability, post-translational modifications (PTMs), and data integration. Current advancements are enhanced mass spectrometry techniques, single-cell proteomics, artificial intelligence and machine learning, advanced protein labeling techniques, integration with other omics technologies, and functional proteomics. However, the recently emerging field of immunoproteomics has more promising possibilities in the field of peptide-based vaccines and virus-like particle vaccines. The importance of immunoproteomics technologies and methodologies, as well as their use in the field of vaccinomics, are the main topics of this review. Here, we have discussed immunoproteomics in relation to a step towards the future of vaccination.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein and Peptide Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0109298665342261240912105111","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The study of large protein sets (proteomics) involved in the immunological reaction is known as immunoproteomics. The methodology of immunoproteomics plays a major role in identifying possible vaccine candidates that could protect against pathogenic infection. The study of immunogenic proteins that are expressed during the outset of infection is the focus of the crosstalk between proteomics and immune protection antigens utilizing serum. Peptide presentation by MHC provides the new 'window' into changes that occur in the cell. Thus, there is strong, intense pressure on the pathogen that has been mutated in such an unusual manner that it can bypass the MHC peptide presentation by the MHC molecule. The pathogen's ability to evade the immune system is strongly restricted by the two unique distinct properties of MHC molecules, i.e., polygenic and polymorphic properties. MHC-I restriction epitope identification has traditionally been accomplished using genetic motif prediction. The study of immune system proteins and their interactions is the main emphasis of the specialist field of immunoproteomics within proteomics. Methodologies include mass spectrometry (MS), SRM assay, MALDI-TOF, Chromatography, ELISA, 2DG PAGE, and bioinformatics tools. Challenges are the complexity of the immune system, protein abundance and dynamics, sample variability, post-translational modifications (PTMs), and data integration. Current advancements are enhanced mass spectrometry techniques, single-cell proteomics, artificial intelligence and machine learning, advanced protein labeling techniques, integration with other omics technologies, and functional proteomics. However, the recently emerging field of immunoproteomics has more promising possibilities in the field of peptide-based vaccines and virus-like particle vaccines. The importance of immunoproteomics technologies and methodologies, as well as their use in the field of vaccinomics, are the main topics of this review. Here, we have discussed immunoproteomics in relation to a step towards the future of vaccination.
期刊介绍:
Protein & Peptide Letters publishes letters, original research papers, mini-reviews and guest edited issues in all important aspects of protein and peptide research, including structural studies, advances in recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, and drug design. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallization and preliminary structure determination of biologically important proteins are considered only if they include significant new approaches or deal with proteins of immediate importance, and preliminary structure determinations of biologically important proteins. Purely theoretical/review papers should provide new insight into the principles of protein/peptide structure and function. Manuscripts describing computational work should include some experimental data to provide confirmation of the results of calculations.
Protein & Peptide Letters focuses on:
Structure Studies
Advances in Recombinant Expression
Drug Design
Chemical Synthesis
Function
Pharmacology
Enzymology
Conformational Analysis
Immunology
Biotechnology
Protein Engineering
Protein Folding
Sequencing
Molecular Recognition
Purification and Analysis