Giulia Cazzanelli, Andrea Dalle Vedove, Nicolò Sbardellati, Luca Valer, Amedeo Caflisch, Graziano Lolli
{"title":"Enhanced cellular death in liver and breast cancer cells by dual BET/BRPF1 inhibitors.","authors":"Giulia Cazzanelli, Andrea Dalle Vedove, Nicolò Sbardellati, Luca Valer, Amedeo Caflisch, Graziano Lolli","doi":"10.1002/pro.5191","DOIUrl":null,"url":null,"abstract":"<p><p>The acetylpyrrole scaffold is an acetylated lysine mimic that has been previously explored to develop bromodomain inhibitors. When tested on the hepatoma cell line Huh7 and the breast cancer cell line MDA-MB-231, a few compounds in our acetylpyrrole-thiazole library induced peculiar morphological changes, progressively causing cell death at increasing concentrations. Their evaluation on a panel of human bromodomains revealed concurrent inhibition of BRPF1 and BET bromodomains. To dissect the observed cellular effects, the acetylpyrrole derivatives were compared to JQ1 and GSK6853, chemical probes for the bromodomains of BET and BRPF1, respectively. The appearance of neurite-like extrusions, accompanied by βIII-tubulin overexpression, is caused by BET inhibition, with limited effect on cellular viability. Conversely, interference with BRPF1 induces cellular death but not phenotypic alterations. Combined treatment with JQ1 and GSK6853 showed additivity in reducing cellular viability, comparably to the acetylpyrrole-thiazole-based BET/BRPF1 inhibitors. In addition, we determined the crystallographic structures of the BRD4 and BRPF1 bromodomains in complex with the acetylpyrrole-thiazole compounds. The binding modes in the two bromodomains show similar interactions for the acetylpyrrole and different orientations of the moiety that point to the rim of the acetyl-lysine pocket.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521936/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.5191","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The acetylpyrrole scaffold is an acetylated lysine mimic that has been previously explored to develop bromodomain inhibitors. When tested on the hepatoma cell line Huh7 and the breast cancer cell line MDA-MB-231, a few compounds in our acetylpyrrole-thiazole library induced peculiar morphological changes, progressively causing cell death at increasing concentrations. Their evaluation on a panel of human bromodomains revealed concurrent inhibition of BRPF1 and BET bromodomains. To dissect the observed cellular effects, the acetylpyrrole derivatives were compared to JQ1 and GSK6853, chemical probes for the bromodomains of BET and BRPF1, respectively. The appearance of neurite-like extrusions, accompanied by βIII-tubulin overexpression, is caused by BET inhibition, with limited effect on cellular viability. Conversely, interference with BRPF1 induces cellular death but not phenotypic alterations. Combined treatment with JQ1 and GSK6853 showed additivity in reducing cellular viability, comparably to the acetylpyrrole-thiazole-based BET/BRPF1 inhibitors. In addition, we determined the crystallographic structures of the BRD4 and BRPF1 bromodomains in complex with the acetylpyrrole-thiazole compounds. The binding modes in the two bromodomains show similar interactions for the acetylpyrrole and different orientations of the moiety that point to the rim of the acetyl-lysine pocket.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).