NPKGRIDS: a global georeferenced dataset of N, P2O5, and K2O fertilizer application rates for 173 crops.

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Data Pub Date : 2024-10-30 DOI:10.1038/s41597-024-04030-4
Thu Ha Nguyen, Fiona H M Tang, Giulia Conchedda, Leon Casse, Griffiths Obli-Laryea, Francesco N Tubiello, Federico Maggi
{"title":"NPKGRIDS: a global georeferenced dataset of N, P<sub>2</sub>O<sub>5</sub>, and K<sub>2</sub>O fertilizer application rates for 173 crops.","authors":"Thu Ha Nguyen, Fiona H M Tang, Giulia Conchedda, Leon Casse, Griffiths Obli-Laryea, Francesco N Tubiello, Federico Maggi","doi":"10.1038/s41597-024-04030-4","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce NPKGRIDS, a new geospatial dataset, providing for the first time data on application rates for all three main plant nutrients, nitrogen (N), phosphorus (P, in terms of phosphorus pentoxide, P<sub>2</sub>O<sub>5</sub>) and potassium (K, in terms of potassium oxide, K<sub>2</sub>O) across 173 crops as of 2020, with a geospatial resolution of 0.05° (approximately 5.6 km at the equator). Development of NPKGRIDS adopted a data fusion approach to integrate crop mask information with eight published datasets of fertilizer application rates, compiled from either georeferenced data or national and subnational statistics. Furthermore, the total applied mass of N, P<sub>2</sub>O<sub>5</sub>, and K<sub>2</sub>O were benchmarked against the country level information from FAO and the International Fertilizers Association (IFA) and validated against data available from National Statistical Offices (NSOs). NPKGRIDS can be used in global modelling, and decision and policy making to help maximize crop yields while reducing environmental impacts.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1179"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526156/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04030-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce NPKGRIDS, a new geospatial dataset, providing for the first time data on application rates for all three main plant nutrients, nitrogen (N), phosphorus (P, in terms of phosphorus pentoxide, P2O5) and potassium (K, in terms of potassium oxide, K2O) across 173 crops as of 2020, with a geospatial resolution of 0.05° (approximately 5.6 km at the equator). Development of NPKGRIDS adopted a data fusion approach to integrate crop mask information with eight published datasets of fertilizer application rates, compiled from either georeferenced data or national and subnational statistics. Furthermore, the total applied mass of N, P2O5, and K2O were benchmarked against the country level information from FAO and the International Fertilizers Association (IFA) and validated against data available from National Statistical Offices (NSOs). NPKGRIDS can be used in global modelling, and decision and policy making to help maximize crop yields while reducing environmental impacts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NPKGRIDS:173 种作物的氮、五氧化二磷和氧化钾施肥量的全球地理参照数据集。
我们介绍的 NPKGRIDS 是一个新的地理空间数据集,它首次提供了截至 2020 年 173 种作物的所有三种主要植物养分,即氮(N)、磷(P,以五氧化二磷表示)和钾(K,以氧化钾表示)的施肥量数据,地理空间分辨率为 0.05°(赤道约 5.6 千米)。NPKGRIDS 的开发采用了数据融合方法,将作物掩膜信息与八个已发布的化肥施用量数据集整合在一起,这些数据集由地理参照数据或国家和国家以下各级统计数据编制而成。此外,N、P2O5 和 K2O 的总施用量以粮农组织和国际肥料协会 (IFA) 提供的国家级信息为基准,并与国家统计局 (NSO) 提供的数据进行了验证。NPKGRIDS 可用于全球建模、决策和政策制定,以帮助最大限度地提高作物产量,同时减少对环境的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
期刊最新文献
A continuous pursuit dataset for online deep learning-based EEG brain-computer interface. A dataset of venture capitalist types in China (1978-2021): A machine-human hybrid approach. A high-quality genome assembly of the Spectacled Fulvetta (Fulvetta ruficapilla) endemic to China. A Hyperspectral Reflectance Database of Plastic Debris with Different Fractional Abundance in River Systems. Annotated test-retest dataset of lung cancer CT scan images reconstructed at multiple imaging parameters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1