Comparative Evaluation of Dosimetric Quality and Treatment Efficiency for Halcyon, TrueBeam, and TomoTherapy in Cervical-Thoracic Esophageal Cancer Radiotherapy.
{"title":"Comparative Evaluation of Dosimetric Quality and Treatment Efficiency for Halcyon, TrueBeam, and TomoTherapy in Cervical-Thoracic Esophageal Cancer Radiotherapy.","authors":"Shilin Chen, Jiazhou Wang, Weigang Hu, Yao Xu","doi":"10.1177/15330338241293321","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This study primarily aims to investigate the suitability of Halcyon in the context of cervical-thoracic esophageal cancer by exploring the dosimetric quality and delivery efficiency of Halcyon plans with different arc configurations. Additionally, it compares these findings with the dosimetric indices and delivery efficiency of TrueBeam and TomoTherapy accelerators, focusing on their capability to optimize protection for organs at risk (OARs) while maintaining efficient treatment delivery strategies.</p><p><strong>Methods: </strong>This retrospective study involved 26 patients diagnosed with cervical-thoracic esophageal cancer, and new radiotherapy plans were created using Halcyon, TrueBeam, and TomoTherapy. Dose volume histogram (DVH) metrics and delivery efficiency for plans involving different arc numbers on Halcyon (2, 3, and 4 arcs) were compared with those from TrueBeam and TomoTherapy. T-tests were employed to evaluate differences in organ protection among the accelerators.</p><p><strong>Results: </strong>The Halcyon plans, especially those with 4 arcs, provided superior protection for organs at risk, including the heart, lungs, and spinal cord, while maintaining excellent delivery efficiency. Compared to TrueBeam 2arc plans and TomoTherapy helical plans, Halcyon plans with 3 arcs also showed slight advantages. Although TomoTherapy offered better uniformity in dose distribution, it did not demonstrate a clear advantage over the other accelerators in terms of OAR protection or treatment efficiency. Furthermore, despite the lack of clear advantages in TrueBeam 2arc plans with flattening filter (FF), TrueBeam with flattening filter free (FFF) plans may hold potential in the treatment.</p><p><strong>Conclusion: </strong>Halcyon, particularly with 4 arcs, offers an optimal balance between reducing toxicity to organs at risk and maintaining treatment efficiency, making it a preferred choice in cervical thoracic esophageal cancer radiotherapy. The findings highlight the need for careful selection of radiotherapy accelerators based on specific clinical goals, with Halcyon showing potential advantages in scenarios where both treatment efficiency and OAR protection are paramount.</p>","PeriodicalId":22203,"journal":{"name":"Technology in Cancer Research & Treatment","volume":"23 ","pages":"15330338241293321"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528764/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology in Cancer Research & Treatment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15330338241293321","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: This study primarily aims to investigate the suitability of Halcyon in the context of cervical-thoracic esophageal cancer by exploring the dosimetric quality and delivery efficiency of Halcyon plans with different arc configurations. Additionally, it compares these findings with the dosimetric indices and delivery efficiency of TrueBeam and TomoTherapy accelerators, focusing on their capability to optimize protection for organs at risk (OARs) while maintaining efficient treatment delivery strategies.
Methods: This retrospective study involved 26 patients diagnosed with cervical-thoracic esophageal cancer, and new radiotherapy plans were created using Halcyon, TrueBeam, and TomoTherapy. Dose volume histogram (DVH) metrics and delivery efficiency for plans involving different arc numbers on Halcyon (2, 3, and 4 arcs) were compared with those from TrueBeam and TomoTherapy. T-tests were employed to evaluate differences in organ protection among the accelerators.
Results: The Halcyon plans, especially those with 4 arcs, provided superior protection for organs at risk, including the heart, lungs, and spinal cord, while maintaining excellent delivery efficiency. Compared to TrueBeam 2arc plans and TomoTherapy helical plans, Halcyon plans with 3 arcs also showed slight advantages. Although TomoTherapy offered better uniformity in dose distribution, it did not demonstrate a clear advantage over the other accelerators in terms of OAR protection or treatment efficiency. Furthermore, despite the lack of clear advantages in TrueBeam 2arc plans with flattening filter (FF), TrueBeam with flattening filter free (FFF) plans may hold potential in the treatment.
Conclusion: Halcyon, particularly with 4 arcs, offers an optimal balance between reducing toxicity to organs at risk and maintaining treatment efficiency, making it a preferred choice in cervical thoracic esophageal cancer radiotherapy. The findings highlight the need for careful selection of radiotherapy accelerators based on specific clinical goals, with Halcyon showing potential advantages in scenarios where both treatment efficiency and OAR protection are paramount.
期刊介绍:
Technology in Cancer Research & Treatment (TCRT) is a JCR-ranked, broad-spectrum, open access, peer-reviewed publication whose aim is to provide researchers and clinicians with a platform to share and discuss developments in the prevention, diagnosis, treatment, and monitoring of cancer.