Dopaminergic circuits controlling threat and safety learning.

IF 14.6 1区 医学 Q1 NEUROSCIENCES Trends in Neurosciences Pub Date : 2024-10-28 DOI:10.1016/j.tins.2024.10.001
Sevil Duvarci
{"title":"Dopaminergic circuits controlling threat and safety learning.","authors":"Sevil Duvarci","doi":"10.1016/j.tins.2024.10.001","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to learn from experience that certain cues and situations are associated with threats or safety is crucial for survival and adaptive behavior. Understanding the neural substrates of threat and safety learning has high clinical significance because deficits in these forms of learning characterize anxiety disorders. Traditionally, dopamine neurons were thought to uniformly support reward learning by signaling reward prediction errors. However, the dopamine system is functionally more diverse than was initially appreciated and is also critical for processing threat and safety. In this review, I highlight recent studies demonstrating that dopamine neurons generate prediction errors for threat and safety, and describe how dopamine projections to the amygdala, medial prefrontal cortex (mPFC), and striatum regulate associative threat and safety learning.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":""},"PeriodicalIF":14.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tins.2024.10.001","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The ability to learn from experience that certain cues and situations are associated with threats or safety is crucial for survival and adaptive behavior. Understanding the neural substrates of threat and safety learning has high clinical significance because deficits in these forms of learning characterize anxiety disorders. Traditionally, dopamine neurons were thought to uniformly support reward learning by signaling reward prediction errors. However, the dopamine system is functionally more diverse than was initially appreciated and is also critical for processing threat and safety. In this review, I highlight recent studies demonstrating that dopamine neurons generate prediction errors for threat and safety, and describe how dopamine projections to the amygdala, medial prefrontal cortex (mPFC), and striatum regulate associative threat and safety learning.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
控制威胁和安全学习的多巴胺能回路
从经验中学习某些线索和情境与威胁或安全相关联的能力对于生存和适应行为至关重要。了解威胁和安全学习的神经基质具有重要的临床意义,因为这些形式的学习缺陷是焦虑症的特征。传统上,多巴胺神经元被认为是通过提示奖赏预测错误来统一支持奖赏学习的。然而,多巴胺系统在功能上比最初认识到的更加多样化,而且对于处理威胁和安全问题也至关重要。在这篇综述中,我重点介绍了最近的一些研究,这些研究表明多巴胺神经元会产生威胁和安全的预测错误,并描述了多巴胺投射到杏仁核、内侧前额叶皮层(mPFC)和纹状体是如何调节联想威胁和安全学习的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Trends in Neurosciences
Trends in Neurosciences 医学-神经科学
CiteScore
26.50
自引率
1.30%
发文量
123
审稿时长
6-12 weeks
期刊介绍: For over four decades, Trends in Neurosciences (TINS) has been a prominent source of inspiring reviews and commentaries across all disciplines of neuroscience. TINS is a monthly, peer-reviewed journal, and its articles are curated by the Editor and authored by leading researchers in their respective fields. The journal communicates exciting advances in brain research, serves as a voice for the global neuroscience community, and highlights the contribution of neuroscientific research to medicine and society.
期刊最新文献
Advancing ALS research: public-private partnerships to accelerate drug and biomarker development. The intertwined relationship between circadian dysfunction and Parkinson's disease. Multiple predictions of others' actions in the human brain. Representational spaces in orbitofrontal and ventromedial prefrontal cortex: task states, values, and beyond. Interconnected neural circuits mediating social reward.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1