Establishing data elements and exchange standards to support long COVID healthcare and research.

IF 2.5 Q2 HEALTH CARE SCIENCES & SERVICES JAMIA Open Pub Date : 2024-09-11 eCollection Date: 2024-10-01 DOI:10.1093/jamiaopen/ooae095
Gay Dolin, Himali Saitwal, Karen Bertodatti, Savanah Mueller, Arlene S Bierman, Jerry Suls, Katie Brandt, Djibril S Camara, Stephanie Leppry, Emma Jones, Evelyn Gallego, Dave Carlson, Jenna Norton
{"title":"Establishing data elements and exchange standards to support long COVID healthcare and research.","authors":"Gay Dolin, Himali Saitwal, Karen Bertodatti, Savanah Mueller, Arlene S Bierman, Jerry Suls, Katie Brandt, Djibril S Camara, Stephanie Leppry, Emma Jones, Evelyn Gallego, Dave Carlson, Jenna Norton","doi":"10.1093/jamiaopen/ooae095","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The Multiple Chronic Conditions (MCCs) Electronic Care (e-Care) Plan project aims to establish care planning data standards for individuals living with MCCs. This article reports on the portion of the project focused on long COVID and presents the process of identifying and modeling data elements using the HL7 Fast Healthcare Interoperability Resources (FHIR) standard.</p><p><strong>Materials and methods: </strong>Critical data elements for managing long COVID were defined through a consensus-driven approach involving a Technical Expert Panel (TEP). This involved 2 stages: identifying data concepts and establishing electronic exchange standards.</p><p><strong>Results: </strong>The TEP-identified and -approved long COVID data elements were mapped to the HL7 US Core FHIR profiles for syntactic representation, and value sets from standard code systems were developed for semantic representation of the long COVID concepts.</p><p><strong>Discussion: </strong>Establishing common long COVID data standards through this process, and representing them with the HL7 FHIR standard, facilitates interoperable data collection, benefiting care delivery and patient-centered outcomes research (PCOR) for long COVID. These standards may support initiatives including clinical and pragmatic trials, quality improvement, epidemiologic research, and clinical and social interventions.By building standards-based data collection, this effort accelerates the development of evidence to better understand and deliver effective long COVID interventions and patient and caregiver priorities within the context of MCCs and to advance the delivery of coordinated, person-centered care.</p><p><strong>Conclusion: </strong>The open, collaborative, and consensus-based approach used in this project will enable the sharing of long COVID-related health concerns, interventions, and outcomes for patient-centered care coordination across diverse clinical settings and will facilitate the use of real-world data for long COVID research.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519022/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooae095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The Multiple Chronic Conditions (MCCs) Electronic Care (e-Care) Plan project aims to establish care planning data standards for individuals living with MCCs. This article reports on the portion of the project focused on long COVID and presents the process of identifying and modeling data elements using the HL7 Fast Healthcare Interoperability Resources (FHIR) standard.

Materials and methods: Critical data elements for managing long COVID were defined through a consensus-driven approach involving a Technical Expert Panel (TEP). This involved 2 stages: identifying data concepts and establishing electronic exchange standards.

Results: The TEP-identified and -approved long COVID data elements were mapped to the HL7 US Core FHIR profiles for syntactic representation, and value sets from standard code systems were developed for semantic representation of the long COVID concepts.

Discussion: Establishing common long COVID data standards through this process, and representing them with the HL7 FHIR standard, facilitates interoperable data collection, benefiting care delivery and patient-centered outcomes research (PCOR) for long COVID. These standards may support initiatives including clinical and pragmatic trials, quality improvement, epidemiologic research, and clinical and social interventions.By building standards-based data collection, this effort accelerates the development of evidence to better understand and deliver effective long COVID interventions and patient and caregiver priorities within the context of MCCs and to advance the delivery of coordinated, person-centered care.

Conclusion: The open, collaborative, and consensus-based approach used in this project will enable the sharing of long COVID-related health concerns, interventions, and outcomes for patient-centered care coordination across diverse clinical settings and will facilitate the use of real-world data for long COVID research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建立数据元素和交换标准,以支持长期 COVID 医疗保健和研究。
目标:多重慢性病(MCCs)电子护理(e-Care)计划项目旨在为多重慢性病患者建立护理计划数据标准。本文报告了该项目中重点关注长期慢性病(COVID)的部分,并介绍了使用 HL7 快速医疗保健互操作性资源(FHIR)标准识别和建模数据元素的过程:管理长 COVID 的关键数据元素是通过由技术专家小组 (TEP) 参与的共识驱动法来定义的。这包括两个阶段:确定数据概念和建立电子交换标准:结果:技术专家小组确定并批准的长 COVID 数据元素被映射到 HL7 美国核心 FHIR 配置文件以进行语法表述,并从标准代码系统中开发了值集用于长 COVID 概念的语义表述:讨论:通过此流程建立通用的长 COVID 数据标准,并用 HL7 FHIR 标准表示这些标准,可促进可互操作的数据收集,有利于长 COVID 的护理交付和以患者为中心的结果研究 (PCOR)。通过建立基于标准的数据收集,这项工作加快了证据的开发,以更好地了解和提供有效的长期慢性病毒性干预措施以及 MCCs 背景下患者和护理者的优先事项,并推进以人为本的协调护理服务:本项目所采用的开放、协作和基于共识的方法将有助于在不同的临床环境中分享与长期慢性病毒性相关的健康问题、干预措施和以患者为中心的护理协调结果,并将促进将真实世界的数据用于长期慢性病毒性研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
期刊最新文献
A landmark federal interagency collaboration to promote data science in health care: Million Veteran Program-Computational Health Analytics for Medical Precision to Improve Outcomes Now. Targetable molecular algorithm and training platform development for the treatment of non-small cell lung cancer. Sex, sexual orientation, and gender identity data collection across electronic health record platforms: a national cross-sectional survey. Assessing the use of unstructured electronic health record data to identify exposure to firearm violence. Developing personas to inform the design of digital interventions for perinatal mental health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1