The performance of ChatGPT-4.0o in medical imaging evaluation: a preliminary investigation

IF 9.3 Q1 EDUCATION, SCIENTIFIC DISCIPLINES Journal of Educational Evaluation for Health Professions Pub Date : 2024-01-01 Epub Date: 2024-10-31 DOI:10.3352/jeehp.2024.21.29
Elio Stefan Arruzza, Carla Marie Evangelista, Minh Chau
{"title":"The performance of ChatGPT-4.0o in medical imaging evaluation: a preliminary investigation","authors":"Elio Stefan Arruzza, Carla Marie Evangelista, Minh Chau","doi":"10.3352/jeehp.2024.21.29","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the performance of ChatGPT-4.0o in evaluating the quality of positioning in radiographic images. Thirty radiographs depicting a variety of knee, elbow, ankle, hand, pelvis, and shoulder projections were produced using anthropomorphic phantoms and uploaded to ChatGPT-4.0o. The model was prompted to provide a solution to identify any positioning errors with justification and offer improvements. A panel of radiographers assessed the solutions for radiographic quality based on established positioning criteria, with a grading scale of 1-5. In only 20% of projections, ChatGPT-4.0o correctly recognized all errors with justifications and offered correct suggestions for improvement. The most commonly occurring score was 3 (9 cases, 30%), wherein the model recognized at least 1 specific error and provided a correct improvement. The mean score was 2.9. Overall, low accuracy was demonstrated, with most projections receiving only partially correct solutions. The findings reinforce the importance of robust radiography education and clinical experience.</p>","PeriodicalId":46098,"journal":{"name":"Journal of Educational Evaluation for Health Professions","volume":"21 ","pages":"29"},"PeriodicalIF":9.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational Evaluation for Health Professions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3352/jeehp.2024.21.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the performance of ChatGPT-4.0o in evaluating the quality of positioning in radiographic images. Thirty radiographs depicting a variety of knee, elbow, ankle, hand, pelvis, and shoulder projections were produced using anthropomorphic phantoms and uploaded to ChatGPT-4.0o. The model was prompted to provide a solution to identify any positioning errors with justification and offer improvements. A panel of radiographers assessed the solutions for radiographic quality based on established positioning criteria, with a grading scale of 1-5. In only 20% of projections, ChatGPT-4.0o correctly recognized all errors with justifications and offered correct suggestions for improvement. The most commonly occurring score was 3 (9 cases, 30%), wherein the model recognized at least 1 specific error and provided a correct improvement. The mean score was 2.9. Overall, low accuracy was demonstrated, with most projections receiving only partially correct solutions. The findings reinforce the importance of robust radiography education and clinical experience.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ChatGPT-4.0o 在医学影像评估中的性能:初步调查
本研究调查了 ChatGPT-4.0o 在评估放射影像定位质量方面的性能。研究人员使用拟人化模型制作了 30 张描述各种膝关节、肘关节、踝关节、手部、骨盆和肩部投影的射线照片,并将其上传到 ChatGPT-4.0o。系统会提示模型提供解决方案,以确定任何定位错误并说明理由,同时提出改进建议。由放射技师组成的小组根据既定的定位标准对解决方案的放射质量进行评估,评分标准为 1-5。在只有 20% 的投影中,ChatGPT-4.0o 能正确识别所有错误并说明理由,并提供正确的改进建议。最常见的得分是 3 分(9 例,占 30%),即模型至少识别出 1 个特定错误,并提供了正确的改进建议。平均得分为 2.9 分。总体而言,模型的准确率较低,大多数投影只能得到部分正确的解决方案。研究结果加强了放射学教育和临床经验的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
9.10%
发文量
32
审稿时长
5 weeks
期刊介绍: Journal of Educational Evaluation for Health Professions aims to provide readers the state-of-the art practical information on the educational evaluation for health professions so that to increase the quality of undergraduate, graduate, and continuing education. It is specialized in educational evaluation including adoption of measurement theory to medical health education, promotion of high stakes examination such as national licensing examinations, improvement of nationwide or international programs of education, computer-based testing, computerized adaptive testing, and medical health regulatory bodies. Its field comprises a variety of professions that address public medical health as following but not limited to: Care workers Dental hygienists Dental technicians Dentists Dietitians Emergency medical technicians Health educators Medical record technicians Medical technologists Midwives Nurses Nursing aides Occupational therapists Opticians Oriental medical doctors Oriental medicine dispensers Oriental pharmacists Pharmacists Physical therapists Physicians Prosthetists and Orthotists Radiological technologists Rehabilitation counselor Sanitary technicians Speech-language therapists.
期刊最新文献
The irtQ R package: a user-friendly tool for item response theory-based test data analysis and calibration. Insights into undergraduate medical student selection tools: a systematic review and meta-analysis. Importance, performance frequency, and predicted future importance of dietitians’ jobs by practicing dietitians in Korea: a survey study Presidential address 2024: the expansion of computer-based testing to numerous health professions licensing examinations in Korea, preparation of computer-based practical tests, and adoption of the medical metaverse. Development and validity evidence for the resident-led large group teaching assessment instrument in the United States: a methodological study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1