Micael Oliveira Diniz, Mohammad Khalil, Erika Fagman, Jenny Vikgren, Faiz Haj, Angelica Svalkvist, Magnus Båth, Åse Allansdotter Johnsson
{"title":"Lung nodule localization and size estimation on chest tomosynthesis.","authors":"Micael Oliveira Diniz, Mohammad Khalil, Erika Fagman, Jenny Vikgren, Faiz Haj, Angelica Svalkvist, Magnus Båth, Åse Allansdotter Johnsson","doi":"10.1117/1.JMI.12.S1.S13007","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We aim to investigate the localization, visibility, and measurement of lung nodules in digital chest tomosynthesis (DTS).</p><p><strong>Approach: </strong>Computed tomography (CT), maximum intensity projections (CT-MIP) (transaxial versus coronal orientation), and computer-aided detection (CAD) were used as location reference, and inter- and intra-observer agreement regarding lung nodule size was assessed. Five radiologists analyzed DTS and CT images from 24 participants with lung <math><mrow><mtext>nodules</mtext> <mo>≥</mo> <mn>100</mn> <mtext> </mtext> <msup><mrow><mi>mm</mi></mrow> <mrow><mn>3</mn></mrow> </msup> </mrow> </math> , focusing on lung nodule localization, visibility, and measurement on DTS. Visual grading was used to compare if coronal or transaxial CT-MIP better facilitated the localization of lung nodules in DTS.</p><p><strong>Results: </strong>The majority of the lung nodules (79%) were rated as visible in DTS, although less clearly in comparison with CT. Coronal CT-MIP was the preferred orientation in the task of locating nodules on DTS. On DTS, area-based lung nodule size estimates resulted in significantly less measurement variability when compared with nodule size estimated based on mean diameter (mD) ( <math><mrow><mi>p</mi> <mo><</mo> <mn>0.05</mn></mrow> </math> ). Also, on DTS, area-based lung nodule size estimates were more accurate ( <math><mrow><mi>SEE</mi> <mo>=</mo> <mn>38.7</mn> <mtext> </mtext> <msup><mi>mm</mi> <mn>3</mn></msup> </mrow> </math> ) than lung nodule size estimates based on mean diameter ( <math><mrow><mi>SEE</mi> <mo>=</mo> <mn>42.7</mn> <mtext> </mtext> <msup><mi>mm</mi> <mn>3</mn></msup> </mrow> </math> ).</p><p><strong>Conclusions: </strong>Coronal CT-MIP images are superior to transaxial CT-MIP images in facilitating lung nodule localization in DTS. Most <math><mrow><mtext>nodules</mtext> <mo>≥</mo> <mn>100</mn> <mtext> </mtext> <msup><mrow><mi>mm</mi></mrow> <mrow><mn>3</mn></mrow> </msup> </mrow> </math> found on CT can be visualized, correctly localized, and measured in DTS, and area-based measurement may be the key to more precise and less variable nodule measurements on DTS.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514701/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.S1.S13007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: We aim to investigate the localization, visibility, and measurement of lung nodules in digital chest tomosynthesis (DTS).
Approach: Computed tomography (CT), maximum intensity projections (CT-MIP) (transaxial versus coronal orientation), and computer-aided detection (CAD) were used as location reference, and inter- and intra-observer agreement regarding lung nodule size was assessed. Five radiologists analyzed DTS and CT images from 24 participants with lung , focusing on lung nodule localization, visibility, and measurement on DTS. Visual grading was used to compare if coronal or transaxial CT-MIP better facilitated the localization of lung nodules in DTS.
Results: The majority of the lung nodules (79%) were rated as visible in DTS, although less clearly in comparison with CT. Coronal CT-MIP was the preferred orientation in the task of locating nodules on DTS. On DTS, area-based lung nodule size estimates resulted in significantly less measurement variability when compared with nodule size estimated based on mean diameter (mD) ( ). Also, on DTS, area-based lung nodule size estimates were more accurate ( ) than lung nodule size estimates based on mean diameter ( ).
Conclusions: Coronal CT-MIP images are superior to transaxial CT-MIP images in facilitating lung nodule localization in DTS. Most found on CT can be visualized, correctly localized, and measured in DTS, and area-based measurement may be the key to more precise and less variable nodule measurements on DTS.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.