Understanding the clinical and environmental drivers of antifungal resistance in the One Health context.

IF 2.6 4区 生物学 Q3 MICROBIOLOGY Microbiology-Sgm Pub Date : 2024-10-01 DOI:10.1099/mic.0.001512
Catrin C Williams, Jack B Gregory, Jane Usher
{"title":"Understanding the clinical and environmental drivers of antifungal resistance in the One Health context.","authors":"Catrin C Williams, Jack B Gregory, Jane Usher","doi":"10.1099/mic.0.001512","DOIUrl":null,"url":null,"abstract":"<p><p>Antifungal drugs have had a tremendous impact on human health and the yields of crops. However, in recent years, due to usage both in a health setting and in agriculture, there has been a rapid emergence of antifungal drug resistance that has outpaced novel compound discovery. It is now globally recognized that new strategies to tackle fungal infection are urgently needed, with such approaches requiring the cooperation of both sectors and the development of robust antifungal stewardship rationales. In this review, we examine the current antifungal regimes in clinical and agricultural settings, focusing on two pathogens of importance, <i>Candida auris</i> and <i>Aspergillus fumigatus,</i> examining their drivers of antifungal resistance, the impact of dual-use azoles and the impact agricultural practices have on driving the emergence of resistance. Finally, we postulate that a One Health approach could offer a viable alternative to prolonging the efficacy of current antifungal agents.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11524418/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001512","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Antifungal drugs have had a tremendous impact on human health and the yields of crops. However, in recent years, due to usage both in a health setting and in agriculture, there has been a rapid emergence of antifungal drug resistance that has outpaced novel compound discovery. It is now globally recognized that new strategies to tackle fungal infection are urgently needed, with such approaches requiring the cooperation of both sectors and the development of robust antifungal stewardship rationales. In this review, we examine the current antifungal regimes in clinical and agricultural settings, focusing on two pathogens of importance, Candida auris and Aspergillus fumigatus, examining their drivers of antifungal resistance, the impact of dual-use azoles and the impact agricultural practices have on driving the emergence of resistance. Finally, we postulate that a One Health approach could offer a viable alternative to prolonging the efficacy of current antifungal agents.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
了解 "一体健康 "背景下抗真菌耐药性的临床和环境驱动因素。
抗真菌药物对人类健康和农作物产量产生了巨大影响。然而,近年来,由于在卫生和农业领域的使用,抗真菌药物耐药性迅速出现,其速度超过了新型化合物的发现速度。现在,全球都认识到迫切需要新的战略来应对真菌感染,而这种方法需要两个部门的合作,并需要制定强有力的抗真菌管理理由。在这篇综述中,我们研究了当前临床和农业环境中的抗真菌疗法,重点关注两种重要的病原体:念珠菌和烟曲霉,研究它们产生抗真菌耐药性的原因、双重用途唑类的影响以及农业实践对产生耐药性的影响。最后,我们推测 "同一健康 "方法可以为延长现有抗真菌剂的疗效提供一种可行的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbiology-Sgm
Microbiology-Sgm 生物-微生物学
CiteScore
4.60
自引率
7.10%
发文量
132
审稿时长
3.0 months
期刊介绍: We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms. Topics include but are not limited to: Antimicrobials and antimicrobial resistance Bacteriology and parasitology Biochemistry and biophysics Biofilms and biological systems Biotechnology and bioremediation Cell biology and signalling Chemical biology Cross-disciplinary work Ecology and environmental microbiology Food microbiology Genetics Host–microbe interactions Microbial methods and techniques Microscopy and imaging Omics, including genomics, proteomics and metabolomics Physiology and metabolism Systems biology and synthetic biology The microbiome.
期刊最新文献
Quantifying the fractal complexity of nutrient transport channels in Escherichia coli biofilms under varying cell shape and growth environment. Study of excess manganese stress response highlights the central role of manganese exporter Mnx for holding manganese homeostasis in the cyanobacterium Synechocystis sp. PCC 6803. Diversity pattern and antibiotic activity of microbial communities inhabiting a karst cave from Costa Rica. Biotin concentration affects anaplerotic reactions functioning in glutamic acid production in Corynebacterium glutamicum. Microbiome-derived metabolite effects on intestinal barrier integrity and immune cell response to infection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1