Rosalvo Ferreira de Oliveira Neto, Larissa Almeida Rocha, Milton Pereira de Carvalho Filho, Ricardo Argenton Ramos
{"title":"Addressing visual impairments: Essential software requirements for image caption solutions.","authors":"Rosalvo Ferreira de Oliveira Neto, Larissa Almeida Rocha, Milton Pereira de Carvalho Filho, Ricardo Argenton Ramos","doi":"10.1080/10400435.2024.2413650","DOIUrl":null,"url":null,"abstract":"<p><p>Visually impaired individuals actively utilize devices like computers, tablets, and smartphones, due to advancements in screen reader technologies. Integrating freely available deep learning models, image captioning can further enhance these readers, providing an affordable assistive tech solution. This research outlines the critical software requirements necessary for image captioning tools to effectively serve this demographic. Two qualitative investigations were conducted to determine these requirements. An online survey was first conducted to identify the main preferences of visually impaired users in relation to audio descriptive software, with findings visualized using word clouds. A subsequent study evaluated the proficiency of existing deep learning captioning models in addressing these stipulated requirements. Emphasizing the need for comprehensive image data, the results highlighted three primary areas: 1) characteristics of individuals, 2) color specifics of objects, and 3) the overall context of images. The research indicates that current captioning tools are not entirely effective for the visually impaired. Based on the delineated requirements and suggested future research paths, there is potential for the development of improved image captioning systems, advancing digital accessibility for the visually impaired.</p>","PeriodicalId":51568,"journal":{"name":"Assistive Technology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assistive Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10400435.2024.2413650","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REHABILITATION","Score":null,"Total":0}
引用次数: 0
Abstract
Visually impaired individuals actively utilize devices like computers, tablets, and smartphones, due to advancements in screen reader technologies. Integrating freely available deep learning models, image captioning can further enhance these readers, providing an affordable assistive tech solution. This research outlines the critical software requirements necessary for image captioning tools to effectively serve this demographic. Two qualitative investigations were conducted to determine these requirements. An online survey was first conducted to identify the main preferences of visually impaired users in relation to audio descriptive software, with findings visualized using word clouds. A subsequent study evaluated the proficiency of existing deep learning captioning models in addressing these stipulated requirements. Emphasizing the need for comprehensive image data, the results highlighted three primary areas: 1) characteristics of individuals, 2) color specifics of objects, and 3) the overall context of images. The research indicates that current captioning tools are not entirely effective for the visually impaired. Based on the delineated requirements and suggested future research paths, there is potential for the development of improved image captioning systems, advancing digital accessibility for the visually impaired.
期刊介绍:
Assistive Technology is an applied, scientific publication in the multi-disciplinary field of technology for people with disabilities. The journal"s purpose is to foster communication among individuals working in all aspects of the assistive technology arena including researchers, developers, clinicians, educators and consumers. The journal will consider papers from all assistive technology applications. Only original papers will be accepted. Technical notes describing preliminary techniques, procedures, or findings of original scientific research may also be submitted. Letters to the Editor are welcome. Books for review may be sent to authors or publisher.