motifbreakR v2: expanded variant analysis including indels and integrated evidence from transcription factor binding databases.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-10-23 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae162
Simon G Coetzee, Dennis J Hazelett
{"title":"<i>motifbreakR</i> v2: expanded variant analysis including indels and integrated evidence from transcription factor binding databases.","authors":"Simon G Coetzee, Dennis J Hazelett","doi":"10.1093/bioadv/vbae162","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong><i>motifbreakR</i> scans genetic variants against position weight matrices of transcription factors (TFs) to determine the potential for the disruption of binding at the site of the variant. It leverages the Bioconductor suite of software packages and annotations to query a diverse array of genomes and motif databases. Initially developed to interrogate the effect of single-nucleotide variants on TF binding sites, in <i>motifbreakR</i> v2, we have updated the functionality.</p><p><strong>Results: </strong>New features include the ability to query other types of complex genetic variants, such as short insertions and deletions. This capability allows modeling a more extensive array of variants that may have significant effects on TF binding. Additionally, predictions based on sequence preference alone can indicate many more potential binding events than observed. Adding information from DNA-binding sequencing datasets lends confidence to motif disruption prediction by demonstrating TF binding in cell lines and tissue types. Therefore, <i>motifbreakR can directly query</i> the ReMap2022 database for evidence that a TF matching the disrupted motif binds over the disrupting variant. Finally, in <i>motifbreakR</i>, in addition to the existing interface, we implemented an R/Shiny graphical user interface to simplify and enhance access to researchers with different skill sets.</p><p><strong>Availability and implementation: </strong><i>motifbreakR</i> is implemented in R. Source code, documentation, and tutorials are available on Bioconductor at https://bioconductor.org/packages/release/bioc/html/motifbreakR.html and GitHub at https://github.com/Simon-Coetzee/motifBreakR.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520234/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: motifbreakR scans genetic variants against position weight matrices of transcription factors (TFs) to determine the potential for the disruption of binding at the site of the variant. It leverages the Bioconductor suite of software packages and annotations to query a diverse array of genomes and motif databases. Initially developed to interrogate the effect of single-nucleotide variants on TF binding sites, in motifbreakR v2, we have updated the functionality.

Results: New features include the ability to query other types of complex genetic variants, such as short insertions and deletions. This capability allows modeling a more extensive array of variants that may have significant effects on TF binding. Additionally, predictions based on sequence preference alone can indicate many more potential binding events than observed. Adding information from DNA-binding sequencing datasets lends confidence to motif disruption prediction by demonstrating TF binding in cell lines and tissue types. Therefore, motifbreakR can directly query the ReMap2022 database for evidence that a TF matching the disrupted motif binds over the disrupting variant. Finally, in motifbreakR, in addition to the existing interface, we implemented an R/Shiny graphical user interface to simplify and enhance access to researchers with different skill sets.

Availability and implementation: motifbreakR is implemented in R. Source code, documentation, and tutorials are available on Bioconductor at https://bioconductor.org/packages/release/bioc/html/motifbreakR.html and GitHub at https://github.com/Simon-Coetzee/motifBreakR.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
motifbreakR v2:扩展的变异分析,包括嵌合和来自转录因子结合数据库的综合证据。
动机:motifbreakR 可根据转录因子 (TF) 的位置权重矩阵扫描遗传变异,以确定在变异位点破坏结合的可能性。它利用 Bioconductor 软件包和注释来查询各种基因组和主题数据库。在 motifbreakR v2 中,我们更新了其功能:新功能包括能够查询其他类型的复杂遗传变异,如短插入和短缺失。这一功能允许对可能对 TF 结合产生重大影响的变异进行更广泛的建模。此外,仅根据序列偏好进行预测可能会显示出比观察到的更多的潜在结合事件。通过展示细胞系和组织类型中的 TF 结合情况,从 DNA 结合测序数据集中添加信息可增强对图案破坏预测的信心。因此,motifbreakR 可以直接查询 ReMap2022 数据库,以获得与中断基调匹配的 TF 与中断变体结合的证据。最后,在 motifbreakR 中,除了现有的界面外,我们还实现了一个 R/Shiny 图形用户界面,以简化和提高具有不同技能组合的研究人员的访问能力。源代码、文档和教程可在 Bioconductor https://bioconductor.org/packages/release/bioc/html/motifbreakR.html 和 GitHub https://github.com/Simon-Coetzee/motifBreakR 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
motifbreakR v2: expanded variant analysis including indels and integrated evidence from transcription factor binding databases. TransAnnot-a fast transcriptome annotation pipeline. PatchProt: hydrophobic patch prediction using protein foundation models. Accelerating protein-protein interaction screens with reduced AlphaFold-Multimer sampling. CAPTVRED: an automated pipeline for viral tracking and discovery from capture-based metagenomics samples.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1