A Study of Enhancing Federated Learning on Non-IID Data With Server Learning

Van Sy Mai;Richard J. La;Tao Zhang
{"title":"A Study of Enhancing Federated Learning on Non-IID Data With Server Learning","authors":"Van Sy Mai;Richard J. La;Tao Zhang","doi":"10.1109/TAI.2024.3430250","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) has emerged as a means of distributed learning using local data stored at clients with a coordinating server. Recent studies showed that FL can suffer from poor performance and slower convergence when training data at the clients are not independent and identically distributed (IID). Here, we consider auxiliary server learning (SL) as a \n<italic>complementary</i>\n approach to improving the performance of FL on non-IID data. Our analysis and experiments show that this approach can achieve significant improvements in both model accuracy and convergence time even when the dataset utilized by the server is small and its distribution differs from that of the clients’ aggregate data. Moreover, experimental results suggest that auxiliary SL delivers benefits when employed together with other techniques proposed to mitigate the performance degradation of FL on non-IID data.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 11","pages":"5589-5604"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10601556/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Federated learning (FL) has emerged as a means of distributed learning using local data stored at clients with a coordinating server. Recent studies showed that FL can suffer from poor performance and slower convergence when training data at the clients are not independent and identically distributed (IID). Here, we consider auxiliary server learning (SL) as a complementary approach to improving the performance of FL on non-IID data. Our analysis and experiments show that this approach can achieve significant improvements in both model accuracy and convergence time even when the dataset utilized by the server is small and its distribution differs from that of the clients’ aggregate data. Moreover, experimental results suggest that auxiliary SL delivers benefits when employed together with other techniques proposed to mitigate the performance degradation of FL on non-IID data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过服务器学习加强非 IID 数据上的联合学习的研究。
联合学习(FL)是一种利用存储在客户端的本地数据与协调服务器进行分布式学习的方法。最近的研究表明,当客户端的训练数据不是独立且同分布的(IID)时,FL 的性能会变差,收敛速度也会变慢。在此,我们考虑将辅助服务器学习作为一种补充方法,以提高 FL 在非独立同分布数据上的性能。我们的分析和实验表明,即使服务器使用的数据集很小,而且其分布与客户端的总数据分布不同,这种方法也能显著提高模型的准确性和收敛时间。此外,实验结果表明,当辅助服务器学习与其他技术一起使用时,能有效缓解 FL 在非 IID 数据上的性能下降问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Artificial Intelligence Publication Information Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1