Correction of Griscelli Syndrome Type 2 causing mutations in the RAB27A gene with CRISPR/Cas9.

Turkish journal of biology = Turk biyoloji dergisi Pub Date : 2024-07-31 eCollection Date: 2024-01-01 DOI:10.55730/1300-0152.2705
Özgür Doğuş Erol, Şimal Şenocak, Burcu Özçimen, Gülen Güney Esken, Hasan Basri Kiliç, Çetin Kocaefe, Niek P VAN Til, Fatima Aerts Kaya
{"title":"Correction of Griscelli Syndrome Type 2 causing mutations in the <i>RAB27A</i> gene with CRISPR/Cas9.","authors":"Özgür Doğuş Erol, Şimal Şenocak, Burcu Özçimen, Gülen Güney Esken, Hasan Basri Kiliç, Çetin Kocaefe, Niek P VAN Til, Fatima Aerts Kaya","doi":"10.55730/1300-0152.2705","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>Griscelli Syndrome Type 2 (GS-2) is a rare, inherited immune deficiency caused by a mutation in the <i>RAB27A</i> gene. The current treatment consists of hematopoietic stem cell transplantation, but a lack of suitable donors warrants the development of alternative treatment strategies, including gene therapy. The development of mutation-specific clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 gene editing technology has opened the way for custom-designed gene correction of patient-derived stem cells. In this study, we aimed to custom design CRISPR/Cas9 constructs and test their efficiency on homology-directed repair (HDR) on the correction of exon 3 and exon 7 mutations in the <i>RAB27A</i> gene of GS-2 patient-derived mesenchymal stem cells (MSCs) and induced pluripotent stem cells.</p><p><strong>Materials and methods: </strong>We assessed <i>RAB27A</i> gene and protein expression using qRT-PCR, Western Blot, and immune fluorescence in GS-2 patient-derived MSCs and induced pluripotent stem cells (iPSCs). Guide RNAs (gRNAs) and donor DNAs were designed based on patient mutations in exon 3 and exon 7 using the CHOPCHOP online tool and transfected into GS-2 MSCs and iPSCs by electroporation. The cells were cultured for 2 days and then used for mutation analysis using DNA sequencing.</p><p><strong>Results: </strong>MSCs and iPSCs from the GS-2 patients lacked <i>RAB27A</i> gene and protein expression. After gRNA and donor DNAs were designed and optimized, we found HDR efficiency with gRNA3.3 (10% efficiency) and gRNA7.3 (27% efficiency) for MSCs but lower efficiency in iPSCs (<5%). However, transfection of both MSCs and iPSCs resulted in massive cell death, loss of colony formation, and spontaneous differentiation.</p><p><strong>Conclusion: </strong>The use of CRISPR/Cas9 to genetically correct MSCs and iPSCs from GS-2 patients with different mutations through HDR is feasible but requires optimization of the procedure to reduce cell death and improve stem cell function before clinical application.</p>","PeriodicalId":94363,"journal":{"name":"Turkish journal of biology = Turk biyoloji dergisi","volume":"48 5","pages":"290-298"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518329/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish journal of biology = Turk biyoloji dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0152.2705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background/aim: Griscelli Syndrome Type 2 (GS-2) is a rare, inherited immune deficiency caused by a mutation in the RAB27A gene. The current treatment consists of hematopoietic stem cell transplantation, but a lack of suitable donors warrants the development of alternative treatment strategies, including gene therapy. The development of mutation-specific clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 gene editing technology has opened the way for custom-designed gene correction of patient-derived stem cells. In this study, we aimed to custom design CRISPR/Cas9 constructs and test their efficiency on homology-directed repair (HDR) on the correction of exon 3 and exon 7 mutations in the RAB27A gene of GS-2 patient-derived mesenchymal stem cells (MSCs) and induced pluripotent stem cells.

Materials and methods: We assessed RAB27A gene and protein expression using qRT-PCR, Western Blot, and immune fluorescence in GS-2 patient-derived MSCs and induced pluripotent stem cells (iPSCs). Guide RNAs (gRNAs) and donor DNAs were designed based on patient mutations in exon 3 and exon 7 using the CHOPCHOP online tool and transfected into GS-2 MSCs and iPSCs by electroporation. The cells were cultured for 2 days and then used for mutation analysis using DNA sequencing.

Results: MSCs and iPSCs from the GS-2 patients lacked RAB27A gene and protein expression. After gRNA and donor DNAs were designed and optimized, we found HDR efficiency with gRNA3.3 (10% efficiency) and gRNA7.3 (27% efficiency) for MSCs but lower efficiency in iPSCs (<5%). However, transfection of both MSCs and iPSCs resulted in massive cell death, loss of colony formation, and spontaneous differentiation.

Conclusion: The use of CRISPR/Cas9 to genetically correct MSCs and iPSCs from GS-2 patients with different mutations through HDR is feasible but requires optimization of the procedure to reduce cell death and improve stem cell function before clinical application.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用 CRISPR/Cas9 矫正导致 RAB27A 基因突变的 Griscelli 综合征 2 型。
背景/目的:格里斯切利综合征 2 型(GS-2)是一种罕见的遗传性免疫缺陷病,由 RAB27A 基因突变引起。目前的治疗方法包括造血干细胞移植,但由于缺乏合适的供体,需要开发包括基因疗法在内的替代治疗策略。突变特异性簇状规则间距回文重复序列(CRISPR)/Cas9基因编辑技术的发展为定制设计患者干细胞基因校正开辟了道路。在本研究中,我们旨在定制设计CRISPR/Cas9构建体,并测试其在同源定向修复(HDR)中对GS-2患者间充质干细胞(MSCs)和诱导多能干细胞RAB27A基因第3外显子和第7外显子突变的校正效率:我们使用qRT-PCR、Western Blot和免疫荧光评估了GS-2患者间充质干细胞和诱导多能干细胞(iPSCs)中RAB27A基因和蛋白的表达。根据患者外显子3和外显子7的突变,使用CHOPCHOP在线工具设计了引导RNA(gRNA)和供体DNA,并通过电穿孔转染到GS-2间充质干细胞和iPSC中。细胞培养2天后,使用DNA测序进行突变分析:结果:GS-2患者的间充质干细胞和iPSCs缺乏RAB27A基因和蛋白表达。在对 gRNA 和供体 DNA 进行设计和优化后,我们发现间充质干细胞使用 gRNA3.3(10% 的效率)和 gRNA7.3(27% 的效率)进行 HDR 的效率较高,但 iPSCs 的效率较低(结论:使用 CRISPR/CasCR 进行 HDR 的效率较高,但 iPSCs 的效率较低):使用CRISPR/Cas9通过HDR对GS-2患者不同突变的间充质干细胞和iPSC进行基因校正是可行的,但在临床应用前需要优化程序,以减少细胞死亡并改善干细胞功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Antimetastatic effect of nanodiamond-conjugated quercetin against colon cancer: an in vivo study. Disappearance of Cdc14 from the daughter spindle pole body requires Glc7-Bud14. Delivery of BikDD proapoptotic gene in Peptide-18-targeted Poly(2-oxazoline)-DOPE nanoliposomes for breast cancer models. Pterostilbene suppresses head and neck cancer cell proliferation via induction of apoptosis. Optical imaging and gene transfection potential of linear polyethylenimine-coated Ag2S near-infrared quantum dots.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1