Toward real-world deployment of machine learning for health care: External validation, continual monitoring, and randomized clinical trials

Han Yuan
{"title":"Toward real-world deployment of machine learning for health care: External validation, continual monitoring, and randomized clinical trials","authors":"Han Yuan","doi":"10.1002/hcs2.114","DOIUrl":null,"url":null,"abstract":"<p>In this commentary, we elucidate three indispensable evaluation steps toward the real-world deployment of machine learning within the healthcare sector and demonstrate referable examples for diagnostic, therapeutic, and prognostic tasks. We encourage researchers to move beyond retrospective and within-sample validation, and step into the practical implementation at the bedside rather than leaving developed machine learning models in the dust of archived literature.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":100601,"journal":{"name":"Health Care Science","volume":"3 5","pages":"360-364"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520244/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Care Science","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hcs2.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this commentary, we elucidate three indispensable evaluation steps toward the real-world deployment of machine learning within the healthcare sector and demonstrate referable examples for diagnostic, therapeutic, and prognostic tasks. We encourage researchers to move beyond retrospective and within-sample validation, and step into the practical implementation at the bedside rather than leaving developed machine learning models in the dust of archived literature.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将机器学习应用于医疗保健的现实世界:外部验证、持续监控和随机临床试验。
在这篇评论中,我们阐明了在医疗保健领域实际部署机器学习不可或缺的三个评估步骤,并展示了诊断、治疗和预后任务的可参考示例。我们鼓励研究人员超越回顾性验证和样本内验证,在床边进行实际应用,而不是将开发的机器学习模型尘封在存档文献中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Study on the Effects of National Volume-Based Procurement of Chemical Drugs on Chinese Patent Medicines: Lipid-Lowering Drugs as an Example A Comprehensive Review of Experimental Models of Stress: Pragmatic Insight Into Psychoneuroimmunology Does the Timing of the Initiation of Physical Therapy Post-Rotator Cuff Repair Impact Shoulder Function? Seroepidemiological Assessment of Bordetella pertussis in Jahrom, Southern Iran: A Cross-Sectional Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1