Numerical failure modelling of natural fibre composite coupons using X-ray computed tomography based modelling

Marcus Iversen , Anton Årmann , Robert M. Auenhammer , Nikoleta Pasvanti , Johann Körbelin , Kai Kallio , Leif E. Asp , Renaud Gutkin
{"title":"Numerical failure modelling of natural fibre composite coupons using X-ray computed tomography based modelling","authors":"Marcus Iversen ,&nbsp;Anton Årmann ,&nbsp;Robert M. Auenhammer ,&nbsp;Nikoleta Pasvanti ,&nbsp;Johann Körbelin ,&nbsp;Kai Kallio ,&nbsp;Leif E. Asp ,&nbsp;Renaud Gutkin","doi":"10.1016/j.tmater.2024.100042","DOIUrl":null,"url":null,"abstract":"<div><div>Natural fibre composites offer versatile applications across industries while being superior in sustainability aspects compared to other composite types. To unlock their full potential, it is essential to understand their complex failure involving fibre failure, matrix cracking, and debonding at the fibre-matrix interface. Efforts to address these challenges focus on advanced numerical models, probing behaviour from micro to macro scales. However, these models face complexities in handling intricate failure modes given the non-uniform nature of natural fibres. To overcome these challenges, image-based modelling using X-ray computed tomography scans is proposed. This work’s novelty lies in integrating detailed microstructure information with a nonlinear calibration procedure to accurately model damage and failure in natural fiber composites. It marks a significant step toward developing a virtual testing model, paving the way for assessing composites with varying fiber content or fiber types.</div></div>","PeriodicalId":101254,"journal":{"name":"Tomography of Materials and Structures","volume":"6 ","pages":"Article 100042"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography of Materials and Structures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949673X24000196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Natural fibre composites offer versatile applications across industries while being superior in sustainability aspects compared to other composite types. To unlock their full potential, it is essential to understand their complex failure involving fibre failure, matrix cracking, and debonding at the fibre-matrix interface. Efforts to address these challenges focus on advanced numerical models, probing behaviour from micro to macro scales. However, these models face complexities in handling intricate failure modes given the non-uniform nature of natural fibres. To overcome these challenges, image-based modelling using X-ray computed tomography scans is proposed. This work’s novelty lies in integrating detailed microstructure information with a nonlinear calibration procedure to accurately model damage and failure in natural fiber composites. It marks a significant step toward developing a virtual testing model, paving the way for assessing composites with varying fiber content or fiber types.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用基于 X 射线计算机断层扫描技术的模型对天然纤维复合材料试样进行失效数值建模
天然纤维复合材料可广泛应用于各行各业,同时在可持续性方面优于其他类型的复合材料。要充分挖掘天然纤维复合材料的潜力,就必须了解其复杂的失效情况,包括纤维失效、基体开裂以及纤维-基体界面的脱粘。应对这些挑战的努力主要集中在先进的数值模型上,以探测从微观到宏观尺度的行为。然而,由于天然纤维的非均匀性,这些模型在处理复杂的失效模式时面临着复杂性。为了克服这些挑战,我们提出了利用 X 射线计算机断层扫描进行图像建模的方法。这项工作的新颖之处在于将详细的微观结构信息与非线性校准程序整合在一起,以准确地模拟天然纤维复合材料的损伤和失效。这标志着向开发虚拟测试模型迈出了重要一步,为评估不同纤维含量或纤维类型的复合材料铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of AI crack segmentation models for additive manufacturing Contrast-enhancing staining agents for ex vivo contrast-enhanced computed tomography: A review Visualizing pulp fibers using X-ray tomography: Enhancing the contrast by labeling with iron oxide nanoparticles and the use of immersion oil 3D mineral quantification of particulate materials with rare earth mineral inclusions: Achieving sub-voxel resolution by considering the partial volume and blurring effect Geo-SegNet: A contrastive learning enhanced U-net for geomaterial segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1