Rencheng Song , Zhenzhou Du , Juan Cheng , Chang Li , Xuezhi Yang
{"title":"Video-based heart rate estimation with spectrogram signal quality ranking and fusion","authors":"Rencheng Song , Zhenzhou Du , Juan Cheng , Chang Li , Xuezhi Yang","doi":"10.1016/j.bspc.2024.107094","DOIUrl":null,"url":null,"abstract":"<div><div>Remote photoplethysmography (rPPG) enables non-contact measurement of heart rate (HR). However, the stability of rPPG extraction is a bottleneck limiting its application. To address this issue, a signal quality ranking and fusion (SQRF) approach based on HR continuity in the time–frequency domain is introduced. Firstly, the facial region is divided into multiple regions of interest (ROIs), and the raw blood volume pulse (BVP) signal is extracted from each ROI separately using a conventional rPPG method such as the plane orthogonal to skin (POS) method. Then, wavelet synchrosqueezed transform (WSST) is employed to convert the raw pulse signals into spectrograms, which are further ranked according to the HR instantaneous continuity. The selected spectrograms with high-quality HR continuity are then fused using a weighted average to predict the final HR. The proposed SQRF algorithm is verified on three public datasets DDPM, UBFC-Phys and PURE with real scenarios. The obtained mean absolute error (MAE) was reduced by 58.7%, 47.5%, and 16.0% respectively, compared to the original single-ROI method. The results prove that SORF with spectrogram-based HR continuity can consistently boost the stability of POS.</div></div>","PeriodicalId":55362,"journal":{"name":"Biomedical Signal Processing and Control","volume":"100 ","pages":"Article 107094"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Signal Processing and Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1746809424011522","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Remote photoplethysmography (rPPG) enables non-contact measurement of heart rate (HR). However, the stability of rPPG extraction is a bottleneck limiting its application. To address this issue, a signal quality ranking and fusion (SQRF) approach based on HR continuity in the time–frequency domain is introduced. Firstly, the facial region is divided into multiple regions of interest (ROIs), and the raw blood volume pulse (BVP) signal is extracted from each ROI separately using a conventional rPPG method such as the plane orthogonal to skin (POS) method. Then, wavelet synchrosqueezed transform (WSST) is employed to convert the raw pulse signals into spectrograms, which are further ranked according to the HR instantaneous continuity. The selected spectrograms with high-quality HR continuity are then fused using a weighted average to predict the final HR. The proposed SQRF algorithm is verified on three public datasets DDPM, UBFC-Phys and PURE with real scenarios. The obtained mean absolute error (MAE) was reduced by 58.7%, 47.5%, and 16.0% respectively, compared to the original single-ROI method. The results prove that SORF with spectrogram-based HR continuity can consistently boost the stability of POS.
期刊介绍:
Biomedical Signal Processing and Control aims to provide a cross-disciplinary international forum for the interchange of information on research in the measurement and analysis of signals and images in clinical medicine and the biological sciences. Emphasis is placed on contributions dealing with the practical, applications-led research on the use of methods and devices in clinical diagnosis, patient monitoring and management.
Biomedical Signal Processing and Control reflects the main areas in which these methods are being used and developed at the interface of both engineering and clinical science. The scope of the journal is defined to include relevant review papers, technical notes, short communications and letters. Tutorial papers and special issues will also be published.