{"title":"Expected constraints on Phobos interior from the MMX gravity and rotation observations","authors":"Alfonso Caldiero, Sébastien Le Maistre","doi":"10.1016/j.icarus.2024.116343","DOIUrl":null,"url":null,"abstract":"<div><div>The origin of the Martian moons is still uncertain, and knowledge about their interior could provide support to some of its leading theories. In preparation for the JAXA Martian Moons eXploration (MMX) mission, we review our current knowledge on the interior of Phobos, and provide synthetic tests showing how the gravity and rotation determination could allow the detection of specific interior-structure properties. The inversion of the geodetic observables for the retrieval of the internal mass distribution of a set of synthetic interior models is performed via non-linear least-squares, where the interior parameterization is based on the level-set method. We additionally provide simple expressions allowing to relate some of these interior models to the geodetic observables of Phobos. The results, based on realistic measurement resolution and noise scenarios, show good retrievals for most of the models at the data resolutions expected from MMX. Specifically, we find the gravity information is realistically sufficient for the detection of mass anomalies below the Stickney crater, as well as large scale heterogeneous regions within plausible rubble-pile structures. Libration helps retrieve the more degenerate models for gravity, such as those with concentric layers or with density varying linearly with depth. The incremental improvement from further adding a hypothetical mean obliquity measurement is marginal. Finally, we apply the level-set inversion and the analytical formulas to estimate possible interior characteristics of the ‘real’ Phobos from the currently-available scarce geodetic observables. The level-set solutions for the real-data inversion generally converge to a higher mass concentration towards the surface in the equatorial region. Markov chain Monte Carlo estimations of parameters relative to a simple 2-layer model or a radial density distribution similarly hint at a lighter region inside of Phobos.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"426 ","pages":"Article 116343"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103524004032","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The origin of the Martian moons is still uncertain, and knowledge about their interior could provide support to some of its leading theories. In preparation for the JAXA Martian Moons eXploration (MMX) mission, we review our current knowledge on the interior of Phobos, and provide synthetic tests showing how the gravity and rotation determination could allow the detection of specific interior-structure properties. The inversion of the geodetic observables for the retrieval of the internal mass distribution of a set of synthetic interior models is performed via non-linear least-squares, where the interior parameterization is based on the level-set method. We additionally provide simple expressions allowing to relate some of these interior models to the geodetic observables of Phobos. The results, based on realistic measurement resolution and noise scenarios, show good retrievals for most of the models at the data resolutions expected from MMX. Specifically, we find the gravity information is realistically sufficient for the detection of mass anomalies below the Stickney crater, as well as large scale heterogeneous regions within plausible rubble-pile structures. Libration helps retrieve the more degenerate models for gravity, such as those with concentric layers or with density varying linearly with depth. The incremental improvement from further adding a hypothetical mean obliquity measurement is marginal. Finally, we apply the level-set inversion and the analytical formulas to estimate possible interior characteristics of the ‘real’ Phobos from the currently-available scarce geodetic observables. The level-set solutions for the real-data inversion generally converge to a higher mass concentration towards the surface in the equatorial region. Markov chain Monte Carlo estimations of parameters relative to a simple 2-layer model or a radial density distribution similarly hint at a lighter region inside of Phobos.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.