Fengya Ran , Meng He , Shiyong Sun , Rui Lv , Sen Lin , Ke Wang , Yevgeny Aleksandrovich Golubev , Olga Borisovna Kotova , Elena Leonidovna Kotova
{"title":"Synthesis of Fe-ZSM-5 zeolite from high iron-containing palygorskite with peroxidase-like catalytic performance","authors":"Fengya Ran , Meng He , Shiyong Sun , Rui Lv , Sen Lin , Ke Wang , Yevgeny Aleksandrovich Golubev , Olga Borisovna Kotova , Elena Leonidovna Kotova","doi":"10.1016/j.clay.2024.107619","DOIUrl":null,"url":null,"abstract":"<div><div>Zeolite products synthesized from mineral materials are receiving widespread attention, while there are few reports on the introduction of heteroatom metals from minerals into zeolites. Herein, the effects of different silicon sources, hydrothermal reaction time and the amount of template on the crystallisation of Fe-ZSM-5 were investigated. The morphology and structure of ZSM-5 were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), X-ray electron spectroscopy (XPS) and scanning electron microscopy (SEM). The catalysis of 3,3′,5,5′-tetramethylbenzidine (TMB) by Fe-ZSM-5 was then carried out to evaluate its enzyme-like catalytic performance as a type of nanozyme catalyst. The results showed that Fe-ZSM-5 exhibited peroxidase-like activity, oxidizing TMB into a colored substance in the presence of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). Kinetic analysis implied that, compared with natural horseradish peroxidase (HRP), Fe-ZSM-5 peroxidase mimics exhibit inferior affinity and enzymatic catalytic velocity towards the TMB substrate. However, it exhibited excellent stability under extreme pH, temperature, and ionic strength conditions. This work provides a possible reference for the construction of functional nanozymes using natural mineral resources.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"262 ","pages":"Article 107619"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131724003673","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Zeolite products synthesized from mineral materials are receiving widespread attention, while there are few reports on the introduction of heteroatom metals from minerals into zeolites. Herein, the effects of different silicon sources, hydrothermal reaction time and the amount of template on the crystallisation of Fe-ZSM-5 were investigated. The morphology and structure of ZSM-5 were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), X-ray electron spectroscopy (XPS) and scanning electron microscopy (SEM). The catalysis of 3,3′,5,5′-tetramethylbenzidine (TMB) by Fe-ZSM-5 was then carried out to evaluate its enzyme-like catalytic performance as a type of nanozyme catalyst. The results showed that Fe-ZSM-5 exhibited peroxidase-like activity, oxidizing TMB into a colored substance in the presence of hydrogen peroxide (H2O2). Kinetic analysis implied that, compared with natural horseradish peroxidase (HRP), Fe-ZSM-5 peroxidase mimics exhibit inferior affinity and enzymatic catalytic velocity towards the TMB substrate. However, it exhibited excellent stability under extreme pH, temperature, and ionic strength conditions. This work provides a possible reference for the construction of functional nanozymes using natural mineral resources.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...