Sarah S. Freund , Anna B. Borgognoni , Michael M. Bendtsen , Jørgen Baas , Jeppe S. Byskov , Bahram Ranjkesh , Steen Bærentzen , Jens R. Nyengaard , Thomas Baad-Hansen
{"title":"Comparison of tendon attachment to 3D printed Ti6Al4V implant versus Trevira® implant: A paired experimental animal study","authors":"Sarah S. Freund , Anna B. Borgognoni , Michael M. Bendtsen , Jørgen Baas , Jeppe S. Byskov , Bahram Ranjkesh , Steen Bærentzen , Jens R. Nyengaard , Thomas Baad-Hansen","doi":"10.1016/j.jmbbm.2024.106789","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Soft-tissue attachment is crucial for the success of megaprosthesis surgery and improvement in current treatment is needed. The aim of this study was to compare the biomechanical and histomorphometric properties of soft-tissue attachment between 3D printed Ti6Al4V implants featuring a 630 μm microporous structure and commercially available Trevira® implants with a 200 μm porous structure in a non-loadbearing ovine model.</div></div><div><h3>Methods</h3><div>Ten skeletally mature ewes underwent surgical implantation with both implants. After 4-weeks, mechanical pull-out testing assessed the attachment strength, while histomorphometric analysis evaluated fibroblast cell profile density, multinucleated giant cell profile density, microvessel length and volume density.</div></div><div><h3>Results</h3><div>3D printed Ti6Al4V implants demonstrated a 129% greater attachment strength compared to Trevira® implants (p = 0.003). In the Trevira® group, a 35% increase in fibroblast profile density (p < 0.001) and a 98% increase in multinucleated giant cell profile density (p < 0.001) were observed, with no significant difference in microvessel length density between the groups. However, the Ti6Al4V group exhibited a 50% higher microvessel volume density (p < 0.001) compared to the Trevira® group.</div></div><div><h3>Conclusion</h3><div>3D printed Ti6Al4V implants with a 630 μm microporous structure demonstrated superior attachment strength, enhanced neovascularization, and reduced foreign body reaction compared to the Trevira® implants. These findings suggest that 3D printed Ti6Al4V implants may enhance soft-tissue attachment in megaprosthesis surgeries.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106789"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124004211","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Soft-tissue attachment is crucial for the success of megaprosthesis surgery and improvement in current treatment is needed. The aim of this study was to compare the biomechanical and histomorphometric properties of soft-tissue attachment between 3D printed Ti6Al4V implants featuring a 630 μm microporous structure and commercially available Trevira® implants with a 200 μm porous structure in a non-loadbearing ovine model.
Methods
Ten skeletally mature ewes underwent surgical implantation with both implants. After 4-weeks, mechanical pull-out testing assessed the attachment strength, while histomorphometric analysis evaluated fibroblast cell profile density, multinucleated giant cell profile density, microvessel length and volume density.
Results
3D printed Ti6Al4V implants demonstrated a 129% greater attachment strength compared to Trevira® implants (p = 0.003). In the Trevira® group, a 35% increase in fibroblast profile density (p < 0.001) and a 98% increase in multinucleated giant cell profile density (p < 0.001) were observed, with no significant difference in microvessel length density between the groups. However, the Ti6Al4V group exhibited a 50% higher microvessel volume density (p < 0.001) compared to the Trevira® group.
Conclusion
3D printed Ti6Al4V implants with a 630 μm microporous structure demonstrated superior attachment strength, enhanced neovascularization, and reduced foreign body reaction compared to the Trevira® implants. These findings suggest that 3D printed Ti6Al4V implants may enhance soft-tissue attachment in megaprosthesis surgeries.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.